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Abstract

We consider (M,d) a connected and compact manifold and we denote by
Bi the Bernoulli space MZ. The analogous problem on the half-line N is also
considered. Let A : Bi → R be an observable. Given a temperature T , we
analyze the main properties of the Gibbs state µ̂ 1

T
A.

In order to do our analysis we consider the Ruelle operator associated to 1
T
A,

and we get in this procedure the main eigenfunction ψ 1
T

A. Later, we analyze

selection problems when the temperature goes to zero: a) existence, or not, of
the limit V := limT→0 T log(ψ 1

T
A), a question about selection of subactions, and,

b) existence, or not, of the limit µ̃ := limT→0 µ̂ 1
T

A, a question about selection of
measures.

The existence of subactions and other properties of Ergodic Optimization are
also considered.

The case where the potential depends just on the coordinates (x0, x1) is care-
fully analyzed. We show, in this case, and under suitable hypotheses, a Large
Deviation Principle, when T → 0, graph properties, etc... Finally, we will present
in detail a result due to A. C. D. van Enter and W. M. Ruszel, where the authors
show, for a particular example of potential A, that the selection of measure µ̂ 1

T
A

in this case, does not happen.

0 Introduction

Let (M,d) be a connected and compact manifold. We denote by B the Bernoulli space
MN of sequences represented by x = (x0, x1, x2, x3, ....), where xi, i ≥ 0 belongs to the
space (alphabet) M . By Tychonoff´s Theorem of compactness, we know B is a compact

metric space when equipped with the distance given by dc(x, y) =
∑
k≥0

d(xk,yk)
ck

, with
c > 1. The topologies generated by dc1 or dc2 are the same. We denote d when we
choose c = 2. In several of our results M is the interval [0, 1] or the one-dimensional
circle S1.

The shift σ on B is defined by σ((x0, x1, x2, x3, ....)) = (x1, x2, x3, x4, ....). It is a
continuous function on B.
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Let A : B → R be an observable or potential defined on the Bernoulli space B, i.e.
a real-valued function defined on B. The potential A describes an interaction between
sites in the one-dimensional lattice MN.

For most of the results we consider here we will require A to be Hölder-continuous,
which means there exist constants 0 < α < 1 and HolA > 0 such that |A(x)−A(y)| ≤
HolAd(x, y)α. We call α the exponent of A and HolA the constant for A. We will be
interested here in the Gibbs state µA associated to such A, which will be a probability
measure on B. Note that the set of probability measures on B is compact for the weak*
topology, (which is given by a metric).

For each value β = 1/T , where T is the temperature, we can consider the Gibbs
state µβA, and, we want to show in a particular example (introduced by A. C. D. van
Enter and W. M. Ruszel [20]), that there is no limit (in the weak* topology) of the
family µβA, when β →∞. We will present here in section 6 all the details of the proof
of this non-trivial result.

We point out that by trivial modification of the metric a Holder potential can be
considered a Lipschitz potential (with no change of the topology). Therefore, we can
state our results in either case. The assumption of A being Lipschitz means that there
is fast rate of decay of influence of the potential if we are far away in the lattice.

The case of the lattice Z, that is Bi = MZ can be treated in a similar way: Let
A : MZ → R be a Lipschitz potential, and denote by σ̂ the left-shift on Bi. Any
Lipschitz potential on Bi is σ̂-cohomologous to a potential on B (same proof as in
Proposition 1.2 [45] or, in [7]). We will explain this more carefully later. To consider
σ̂-invariant probability measures on Bi means that the position 0 ∈ Z in the lattice is
not distinguished (which in general makes sense).

We call general one-dimensional XY model the setting described above. A particu-
larly interesting case is when we consider M = S1 (the unit one-dimensional circle) [22]
[35] [20]. This one-dimensional continuous Ising model is another important example
that can be treated in the setting. Below in section 1 our results are for the general
case of any M as above.

We say that the potential A : B → R depends on the first two coordinates if
A(x) = A(x0, x1, x2, ..) = A(x0, x1), for any x = (x0, x1, x2, ..). In this case A is always
Lipschitz. Such kind of potentials are sometimes called nearest neighbor interaction
potentials. The so-called one-dimensional XY model in most of the cases assumes
that A depends on the first two coordinates [22]. Special attention to this case will be
given in section 4. For example, in [22] [19]

A(x) = A(x0, x1) = cos(x1 − x0 − α) + γ cos(2x0),

where α and γ are constants. The part γ cos(2x0) corresponds to the magnetic term
while cos(x1 − x0 − α) corresponds to the interaction term.

We point out that this point of view of getting a coboundary and the systematic
use of the Ruelle operator is the Thermodynamical Formalism setting (see [45]). This,
in principle, is different from the point of view more commonly used in Statistical
Mechanics on general lattices where the Gibbs measures are defined by means of a
specification, DLR formalism, limit of probabilities on finite boxes (see [27], [19], [44]).
We briefly address this question for a potential which depends on two coordinates in
section 5.
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In the Classical Thermodynamic Formalism one usually considers M = {1, 2, ..., d}
[45] [33]. Here M is a compact manifold with a volume form. We point out that we will
use the following notation: we call a Gibbs probability measure for A the measure
which is derived from a Ruelle operator, and we call the equilibrium probability
measure for A the one which is derived from a maximization of Pressure (which requires
one to be able to talk about entropy). We will be interested here in Gibbs states
because we need to avoid to talk about entropy. Note that the shift acting on MN

is such that each point has an uncountable number of pre-images. Just in some late
sections we will speak about ”entropy” and ”pressure” of the potential A (in general
in the case it depends on two coordinates).

An interesting discussion about the several possible approaches (DLR, Thermo-
dynamic limit in finite boxes, etc..) to Statistical Mechanics in the one-dimensional
lattice appears in [53].

Some of the results presented here will be used in a future related paper [40].
We point out that the understanding of Statistical Mechanics via the Ruelle Op-

erator (Transfer Operator) allows one to get eigen-functions, and, in the limit (in the
logarithm scale), when temperature goes to zero, the subaction. This helps in getting
Large Deviation properties of Gibbs states when temperature goes to zero [3] [40].

In the first part of this paper we describe the theory for case of general A (section
1 for positive temperature and section 2 for zero temperature). Later (in section 4) we
will focus on the case where the potential A depends only on the first two coordinates.
Section 5 compares the setting of Thermodynamical Formalism with DLR Formalism.
These two sections will help a better understanding of Section 6 where we present a
detailed explanation of an example [20] where there is no selection of measures.

1 Positive temperature: a generalized Ruelle-Perron-
Frobenius Theorem

Let C be the space of continuous functions from B = MN to R. We are interested in
the Ruelle operator on C associated to the Lipschitz observable A : MN → R, which
acts on ψ ∈ C, and sends it to LA(ψ) ∈ C defined by

LA(ψ)(x) =

∫
M

eA(ax)ψ(ax) d a ,

for any x = (x0, x1, x2, ....) ∈ B, where ax represents the sequence (a, x0, x1, x2, ....) ∈
B, and d a is the Lebesgue probability measure on M . Note that σ(ax) = x.

A major difference between the settings of the Classical Bowen-Ruelle-Sinai Ther-
modynamic Formalism setting and the XY model is that here, in order to define the
Ruelle operator, we need an a priori measure (for which we consider in most of the
cases the Lebesgue probability measure da on S1).

Some of the results of the present section are generalization of theorems in [38].
The operator LA will help us to find the Gibbs state for A. First we will show

the existence of a main eigenfunction for LA, when A is Lipschitz. Part of our proof
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follows the reasoning of section 7 in [1] (which considers M = {1, 2, .., d}), adapted to
the present case.

We begin by defining another operator on C. Let 0 < s < 1, and define, for u ∈ C,
Ts,A(u) given by

Ts,A(u)(x) = log

(∫
M

eA(ax)+su(ax) da

)
.

Proposition 1. If 0 < s < 1 then Ts,A is an uniform contraction map.

Proof.:

|Ts,A(u1)(x)− Ts,A(u2)(x)| =

∣∣∣∣∣log

(∫
M
eA(ax)+su1(ax)∫

M
eA(ax)+su2(ax)

)∣∣∣∣∣ =

=

∣∣∣∣∣log

(∫
M
eA(ax)+su2(ax)+su1(ax)−su2(ax)∫

M
eA(ax)+su2(ax)

)∣∣∣∣∣ ≤
≤ log

(∫
M
eA(ax)+su2(ax)+s‖u1−u2‖∫
M
eA(ax)+su2(ax)

)
= s‖u1 − u2‖ .

Let us be the unique fixed point for Ts,A. We have

log

(∫
M

eA(ax)+sus(ax) da

)
= us(x) . (1)

Proposition 2. The family {us}0<s<1 is an equicontinuous family of functions.

Proof.: Let Hs(x, y) = us(x)− us(y). By (1) we have

eus(x) =

∫
M

eA(ax)+sus(ax)

=

∫
M

eA(ay)+sus(ay)eA(ax)−A(ay)+s[us(ax)−us(ay)]

≤ eus(y) max
a
{eA(ax)−A(ay)+s[us(ax)−us(ay)]}.

Hence

eus(x)−us(y) ≤ max
a
{eA(ax)−A(ay)+s[us(ax)−us(ay)]},

and this implies

Hs(x, y) = us(x)− us(y) ≤ max
a

[A(ax)−A(ay) + sHs(ax, ay)].

Proceeding by induction we get

Hs(x, y) ≤ max
θ∈B

∞∑
n=0

sn[A(θn....θ0x)−A(θn...θ0y)] ≤

4



≤ HolA max
θ∈B

∞∑
n=0

snd((θn....θ0x), (θn...θ0y))α ≤

≤ HolA
∞∑
n=0

( s

2α

)n
d(x, y)α ≤ 2α

2α − 1
HolAd(x, y)α .

Remark 1: This shows that us is Lipschitz, and, moreover, that us, 0 ≤ s < 1,
is an equicontinuous family. Note the very important point: the Lipschitz constant of
us, is given by 2α

2α−1HolA, and depends only on the Holder constant for A, but does
not depend on s.

Let

Sn(z) = Sn,A(z) =

n−1∑
k=0

A ◦ σk(z) .

Note that iterates of the operator LA can be written with the use of Sn,A(z).

LnA(w)(x) =

∫
a∈Mn

eSn,A (ax)w(ax) da.

Theorem 3. There exists a strictly positive Lipschitz eigenfunction ψA for LA : C → C
associated to a strictly positive eigenvalue λA. The eigenvalue is simple and it is equal
to the spectral radius.

Proof. It follows from the fixed point equation that for any x

−||A||+ sminus ≤ us(x) ≤ ||A||+ smaxus.

Therefore, −||A|| ≤ (1 − s) minus ≤ (1 − s) maxus ≤ ||A||, for any s. Consider a
subsequence sn → 1 such that [ (1− sn) maxusn ] → k.

The family {u∗s = us −maxus}0<s<1 is equicontinuous and uniformly bounded.
Therefore, by Arzela-Ascoli {u∗sn}n≥1 has an accumulation point in C, which we

will call u.
Observe that for any s

eu
∗
s(x) = eus(x)−maxus =

e−(1−s) maxus+us(x)−smaxus =

e−(1−s) maxus

∫
eA(ax)+(sus(ax)−smaxus) da.

Taking limit where n goes to infinity for the sequence sn we get that u satisfies

eu(x) = e−k
∫
eA(ax)+u(ax) da.

In this way we get a positive Lipschitz eigenfunction ψA = eu for LA associated
to the eigenvalue λA = ek.

Remark 2: To prove that u is Lipschitz, we just use the fact that u is the limit
of a sequence of uniformly Lipschitz functions (i.e. Lipschitz functions with same
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Lipschitz constant). Using that u is a bounded function we have that ψA = eu is also
Lipschitz. Note a very important point: the Lipschitz constant of u = log(ψA) is given
by 2α

2α−1HolA(see Remark 1 in the end of the proof of Proposition 2).
The property that the eigenvalue is simple and maximal follows from the same

reasoning as in page 23 and 24 of [45]. For example, to prove that the eigenvalue is
simple we suppose there are two eigenfunctions ψ1 and ψ2. Let t = min{ψ1/ψ2}. Then
ψ3 = ψ1 − tψ2 is a non-negative eigenfunction which vanishes at some point z ∈ B.
Therefore

0 = λnAψ3(z) =

∫
a∈Mn

eSn,A (az)ψ3(az) da ,

which implies ψ3(az) = 0 ∀a ∈Mn, ∀n, which makes ψ3 = 0.

Note that ∫
M

eA(ax)ψA(ax)

λAψA(x)
da = 1 , ∀x ∈ B . (2)

If a potential B satisfies ∫
M

eB(ax)da = 1 , ∀x ∈ B ,

which means LB(1) = 1, we say that B is normalized.
Let

Ā = A+ logψA − logψA ◦ σ − log λA,

where σ : B → B is the usual shift map. Equation (2) shows that Ā is normalized.
It is also Lipschitz (Holder). In this case the main eigenvalue is 1 and the main
eigenfunction is constant equal to 1 (in fact we can prove, using proposition 4, that
there is only one strictly positive eigenfunction, the one associated to the maximal
eigenvalue).

Remember that, given x = (x0, x1, x2, ...) ∈ B and a ∈ M , we denote by ax ∈ B
the element ax = (a, x0, x1, x2, ...), i.e., any y ∈ B such that σ(y) = x is of this form.

We define the Borel sigma-algebra F over B as the σ-algebra generated by the
cylinders. By this we mean the sigma-algebra generated by sets of the form B1×B2×
... × Bn ×MN, where n ∈ N, and Bj , j ∈ {1, 2, .., n}, are open sets in M . Similar
definitions can be considered for Bi.

We say a probability measure µ over F is invariant, if for any Borel set B, we have
that µ(B) = µ(σ−1(B)). This corresponds to stationary probability measures for the
underlying stochastic process Xn, n ∈ N, with state space M . We denote by Mσ the
set of invariant probability measures. Similar definitions can be considered for Bi.

We present below a generalization of results considered in [45].
We define the dual operator L∗A on the space of the Borel measures on B as the

operator that sends a measure v to the measure L∗A(v) defined by∫
B
ψ dL∗A(v) =

∫
B
LA(ψ) dv .

for any ψ ∈ C.
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Now we want to find an eigen-probability for L∗A. This will help us to find the
Gibbs state for the potential A.

Proposition 4. If the observable Ā is normalized, then there exists an unique fixed
point m = mĀ for L∗

Ā
. Such a probability measure m is σ-invariant, and for all Holder

continuous function ω we have that, in the uniform convergence topology,

LnĀω →
∫
B
ωdm .

Here Ln
Ā

denotes the n-th iterate of the operator LĀ : C → C.

Proof.: We begin by proving that the normalization property implies that the
convex and compact set of Borel probability measures on B is preserved by the operator
L∗
Ā

: in order to see that, note that for µ a Borel probability measure on B, we have

L∗Ā(µ)(B) =

∫
B

1 dL∗Ā(µ) =

∫
B
LĀ(1)dµ =

∫
B

1 dµ = µ(B) = 1

where the third equality is precisely the normalization hypothesis.
By the Tychonoff-Schauder theorem let m be a fixed point for the operator L∗

Ā
.

To prove that m is σ-invariant, we begin by observing that

LĀ(ψ ◦ σ)(x) =

∫
M

eĀ(ax)ψ ◦ σ(ax)da =

∫
M

eĀ(ax)ψ(x)da = ψ(x).

Note that the normalization hypothesis is used in the last equality.
Therefore, if ψ ∈ C, then∫

B
ψ ◦ σdm =

∫
B
ψ ◦ σdL∗Ā(m) =

∫
B
LĀ(ψ ◦ σ)dm =

∫
B
ψdm.

which implies the invariance property of m.

Before finishing the proof of proposition 4, we will need two claims. The first is a
special estimate which will be important in the rest of this section.

Claim: For any Holder potential A, if ‖w‖ denotes the uniform norm of the Holder
function w : B → R, we have

|LnA(w)(x)− LnA(w)(y)| ≤
[
CeA‖w‖

(
1

2α
+ ...+

1

2nα

)
+
Cw
2nα

]
d(x, y)α,

where CeA is the Holder constant of eA and Cw is the Holder constant of w.
Proof of the Claim: : We prove the claim by induction. Suppose n = 1. We have

|LA(w)(x)− LA(w)(y)| ≤

≤
∫
M

|eA(ax) − eA(ay)| · |w(ax)|da+

∫
M

eA(ay)|w(ax)− w(ay)|da ≤

7



≤ (CeA‖w‖+ Cw)
d(x, y)α

2α
,

where in the last inequality we used the normalization property of A. In particular we
can say that the Holder constant of LA(w) is given by

CLA(w) =
CeA‖w‖+ Cw

2α
. (3)

Now, suppose the Claim holds for n. We have

|Ln+1
A (w)(x)− Ln+1

A (w)(y)| = |LnA(LA(w))(x)− LnA(LA(w))(y)| ≤

≤
[
CeA‖LA(w)‖

(
1

2α
+ ...+

1

2nα

)
+
CLA(w)

2nα

]
d(x, y)α,

and, therefore the claim is proved when we use (3) and ‖LA(w)‖ ≤ ‖w‖ which is
consequence of the normalization property of A.

As a consequence, the set {Ln
Ā
ω}n≥0 is equicontinuous. In order to prove that

{Ln
Ā
ω}n≥0 is uniformly bounded we use again the normalization condition which im-

plies ‖Ln
Ā
ω‖ ≤ ‖w‖ ,∀n ≥ 1.

By the Arzela-Ascoli Theorem let ω̄ be an accumulation point for {Ln
Ā
ω}n≥0, i.e.,

suppose there exists a subsequence {nk}k≥0 such that

ω̄(x) = lim
k≥0
Lnk
Ā
ω(x) .

Second Claim: : ω̄ is a constant function.
The proof of this second claim is similar to the reasoning of page 25 [45].
Now that ω̄ is a constant function we can prove that

ω̄ =

∫
B
ω̄dm = lim

k

∫
B
Lnk
Ā
ωdm = lim

k

∫
B
ωd(L∗Ā)nk(m) =

∫
B
ωdm,

which shows that ω̄ does not depend on the subsequence chosen. Therefore, for any
x ∈ B we have

LnĀω(x)→ ω̄ =

∫
B
ωdm .

The last limit shows that the fixed point m is unique.

Proposition 5. Let A be a Holder, not necessarily normalized potential, and ψA
and λA the eigenfunction and eigenvalue given by theorem 3. To the potential A we
associate the normalized potential Ā = A+ logψA − logψA ◦ σ − log λA. Let m be the
unique probability measure that satisfies L∗

Ā
(m) = m, given by proposition 4.

(a) the measure

ρA =
1

ψA
m
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satisfies L∗A(ρA) = λAρA. Therefore, ρA is an eigen-probability for L∗A.
(b) for any Holder φ : B → R, we have that

LnA(φ)

λnA
→ ψA

∫
φdρA.

Proof: (a) L∗
Ā

(m) = m implies that for any ψ ∈ C, we have∫
ψdm =

∫
ψdL∗Ā(m)

=

∫
LĀ(ψ)dm

=

∫ (∫
ψ(ax)eĀ(ax)da

)
dm(x)

=

∫ (∫
ψ(ax)

eA(ax)ψA(ax)

λAψA(x)
da

)
dm(x) .

Now, if ϕ ∈ C, making ψ = ϕ
ψA

in the last equation we have∫
ϕ

ψA
dm =

1

λA

∫ (∫
ϕ(ax)

eA(ax)

ψA(x)
da

)
dm(x) ,

which is equivalent to

λA

∫
ϕdρA =

∫
LA(ϕ)dρA (4)

or
L∗A(ρA) = λAρA .

(b) We have that A = Ā− logψA + logψA ◦ σ + log λA, and therefore

Sn,A(z) ≡
n−1∑
k=0

A ◦ σk(z) = Sn,Ā(z)− logψA + logψA ◦ σn + n log λA ,

which makes
LnA(φ)(x)

λnA
=

1

λnA

∫
a∈Mn

eSn,A(ax)φ(ax)da =

= ψA(x)

∫
a∈Mn

eSn,Ā(ax)

ψA(ax)
φ(ax)da =

= ψA(x)LnĀ

(
φ

ψA

)
→ ψA(x)

∫
φ

ψA
dmĀ

where the convergence on n in the last line comes from Proposition 4.

Remark 3: From now on we will call mĀ the eigen-probability for L∗
Ā

. One can

show that the eigen-probability ρA = 1
ψA

mĀ is the unique eigen-probability for L∗A.
Also, it is not necessarily invariant for the shift σ.
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We call mĀ the Gibbs state for A. This probability measure mĀ over B is
invariant for the shift and describes the statistics of the interaction described by A. It
is usual to call the probability measure mĀ the Gibbs state (in the Thermodynamic
Formalism setting [45]) for the interaction given by A.

We point out that the probability measure ρA is positive on open sets of B. Suppose
the metric space M = S1. The projection of this probability measure on the first two
coordinates S1 × S1 is absolutely continuous with respect to Lebesgue probability
measure on S1 × S1. This is so because, if B is Borel in [0, 1]2, then from (4) we have∫

I(x0,x1)∈B dρA =
1

λ2
A

∫
L2
Ā (I(x0,x1)∈B) dρA,

and, for any x ∈ B

L2
Ā(I(x0,x1)∈B)(x) =

∫
M

∫
M

eS2,Ā (abx)I(x0,x1)∈B(abx) da db.

Remark 4: If we consider instead a Holder potential B : Bi = MZ → R, where

Bi = {(..., x−2, x−1, x0, x1, x2, ...)|xi ∈M, i ∈ Z},

then, we first derive (as in Proposition 1.2 [45] or, in [7]) the associated cohomologous
Holder potential A : B → R (the Holder class can change), then proceed as above to
get ρA over B. Finally, we consider the natural extension ρ̂A of ρA on Bi (see [46]
[7]), and we solve in this way the Statistical Mechanics problem for the interaction
described by B in the lattice Z: it´s the probability measure ρ̂βA.

Note that if C is a set that depends just on the coordinates x0, x1, then ρβA(C) =
ρ̂βA(C). For sets C ⊂ Bi, of this form, we can use without loss of generality ρβA(C)
or ρ̂βA(C).

Proposition 6. The only Lipschitz continuous eigenfunction ψ of LA which is totally
positive is ψA (the one associated to the maximal eigenvalue λA).

Proof: Suppose ψ : B → R is a Lipschitz continuous eigenfunction of LA associated
to the eigenvalue β.

It follows from the above that
LnA(ψ)
λnA

→ ψA
∫
ψdρA, when n→∞.

Therefore, if ψ > c > 0, then
∫
ψdρA > 0. Moreover, LnA(ψ) = βnψ. This is only

possible if β = λA and ψ = ψA.

It is easy to see that if A is Holder with exponent α, and, denoting Hα, the set of
real-valued functions with Holder exponent α, then LĀ : Hα → Hα.

For w ∈ Hα, denote |w|α = supx 6=y
|w(x)−w(y)|
d(x,y)α . It is known that Hα is a Banach

space for the norm
||w||α = |w|α + ||w||,

where ||w|| is the uniform norm of w.
When α = 1 we are considering the space of Lipschitz functions H1.

10



We note that Kα ≡ {w ∈ Hα , ||w||α ≤ 1} is compact in the uniform norm as a
subset of C. To prove that, we just need to observe that the definition of the norm
||w||α implies that Kα is a equicontinuous and uniformly bounded set, and then we
have the result directly by using Arzela-Ascoli´s theorem.

We can also prove that KAα ≡ {w ∈ Hα ,
∫
w
dmA = 0 , ||w||α ≤ 1} is compact in

the uniform norm. For doing that, let ImA : Hα → R be given by ImA(w) =
∫
wdmA.

We have that ImA is a bounded linear operator, and therefore I−1
mA{0} is a closed subset

of Hα. Now KAα = Kα ∩ I−1
mA{0} is compact.

Proposition 7. Suppose Ā is normalized, then the eigenvalue λĀ = 1 is maximal.
Moreover, the remainder of the spectrum of LĀ : Hα → Hα is contained in a disk
centered at zero with radius strictly smaller than one.

Proof. Remember that 1 is the eigenfunction associated to the eigenvalue 1. We will
show that LĀ restricted to KĀα has spectral radius strictly smaller than 1. We know
from proposition 4 that Lk

Ā
converges to zero in the compact set KĀα .

The normalization hypothesis implies ||Ln+1
Ā

(w)|| ≤ ||Ln
Ā

(w)|| ∀n ≥ 0. We will now
prove that this monotonicity property implies that the convergence above is uniform.
More precisely, we have

Claim: Given a small ε, there exists N = Nε ∈ N such that

||LnĀ(w)|| < ε ∀n ≥ N , ∀w ∈ KĀα .

To prove this claim, let Cn ≡ {w ∈ KĀα : ||Lm
Ā

(w)|| < ε∀m ≥ n}. The mono-
tonicity property implies Cn ⊆ Cn+1 and also that Cn is an open set in the uniform
norm, while Lk

Ā
(w) → 0 implies ∪nCn = KĀα . Therefore, compactness of KĀα implies

KĀα = CN for some N ∈ N.
The last claim is easy to prove and can be enunciated as:
Claim: There exists C > 0 such that
∀n ∈ N and w ∈ Hα

|LnĀ(w)|α ≤ C||w||+
|w|α
(2α)n

.

Now, for any given n and k, using the last Claim we have for w ∈ Hα

|Ln+k
Ā

(w)|α ≤ C||LkĀ(w)||+
|Lk
Ā

(w)|α
(2α)n

≤ C||LkĀ(w)||+ C
||w||
(2α)n

+
|w|α

(2α)n+k
.

Therefore, if ε is small enough and n ≥ Nε, we have that for all w ∈ KĀα

||Ln+k
Ā

(w)||α ≤ ε < 1.

In this case the spectral radius is smaller than ε
1

n+k .

We denote λ1
Ā
< λĀ the spectral radius of LĀ when restricted to the set {w ∈ Hα :∫

w dmĀ = 0}.
Now we will show the exponential decay of correlation for Holder functions.
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Proposition 8. If v, w ∈ L2(mĀ) are such that w is Holder and
∫
w dmĀ = 0, then,

there exists C > 0 such that for all n∫
(v ◦ σn)w dmĀ ≤ C (λ1

Ā)n

Proof. This follows from∫
(v ◦ σn)w dmĀ =

∫
vLnĀw dmĀ.

The above proposition implies that mĀ is mixing (same reasoning as in section 2
of [33] which considers the case of the shift on {1, 2, .., d}N).

Proposition 9. The invariant probability measure mĀ is ergodic.

Proof. If a dynamical system is mixing then it is ergodic (see section 2 in [33]).

A major difference of the general XY Model to the Thermodynamic Formalism
setting (in the sense of [45] [33]) in {1, 2, ..., d}Z is that here we can not define in
the traditional way (via dynamic partitions) the concept of entropy of an invariant
probability measure µ (defined over the sigma algebra F of B). Each element x ∈ B
has an uncountable set of pre-images and this is a problem.

Note that there exist invariant probabilities (for instance, singular with respect to
Lebesgue measure) for the shift on B which have Kolmogorov entropy arbitrarily large.

For the other hand, in the DLR-Gibbs theory, see [31], a definition of entropy is
presented and the variational principle at positive temperatures is worked out and
proved. But here we take another path, just in terms of transfer operators, and we
present the theory of the Ruelle operator for continuous-spin models, and also including
some noncontinuous potentials, which is not part of standard treatments.

Note that the Gibbs state formalism via boundary conditions, as in [27], does not
require, in principle, to talk about entropy (see also our Section 5). We will address
the question about entropy when the potential depends on two coordinates in section
4.

In Statistical Mechanics, for a fixed interaction A under a certain temperature
T > 0, up to a multiplicative constant, the natural potential to be considered is 1

T A.
We denote β = 1

T , and, using the results above we can consider the corresponding
eigenfunction ψβA, eigenvalue λβA = λβ , and the Gibbs state which now will be
denoted µβA.

What happen with these two objects when T → 0 (or, β → ∞), is the purpose of
the next section.
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2 Zero temperature: calibrated subactions, maxi-
mizing probability measures and selection of prob-
ability measures

In this section and also in the next two sections we will consider, among other issues,
questions involving selections of probability measures when the temperature goes to
zero, maximizing probability measures for a given potential and existence of calibrated
subactions. Among other results we will show that, under some conditions, the se-
quence {µβA} of Gibbs states for the potential βA converges to a measure µ∞ which
has the property of maximizing the integral

∫
Adµ among all invariant measures µ

for the shift map. Sometimes such convergence will not occur (this is what we call
non selection of probability measures - a very interesting example due to A. C. D. van
Enter and W. M. Ruszel will be presented in section 6).

We will also consider calibrated subactions, which is an important tool that allows
one to identify the support of the maximizing probability measure µ∞ (see equation
(6) below), and can be used to relate the maximal eigenvalues of the Ruelle operator
to the value m(A) =

∫
Adµ∞ (see theorem 11). Existence of calibrated subactions are

also related to the existence of large deviation principles for the convergence of {µβA}
to µ∞ (see theorem 18 in section 4).

Some of the problems discussed here are usually called ergodic optimization prob-
lems (see [32]). We refer the reader to [16] for question related to Ergodic Transport
Theory.

Consider a fixed Holder potential A and a real variable β > 0. We denote by ψβA
the eigenfunction for the Ruelle operator associated to βA.

Remark 5: Given β and A, the Lipschitz constant of uβ , such that ψβA = euβ ,
depends on the Holder constant for β A (see Remarks 1 and 2). More precisely, the
Lipschitz constant of uβ = log(ψβA) is given by β 2α

2α−1HolA. Therefore, 1
β log(ψβA),

β > 0, is equicontinuous. Note that it is also uniformly bounded from the reasons
described below.

A possible renormalization condition for ψβA [15] is
∫
ψβA dρβA = 1, where ρβA is

the eigen-probability for L∗βA (see proposition 5 and remark 3). For each β > 0 the

normalization hypothesis
∫
ψβA dρβA = 1 implies the existence of xβ ∈ B such that

ψβ(xβ) = 1. Here we are using the connectedness hypothesis of B. When β → ∞ we
have that xβk → x̄, for a subsequence. Note that when we normalize ψβA the Holder
constant of log(ψβA) remains unchanged, which assures the uniformly continuous prop-
erty of the family 1/β log(ψβA) , β > 0. Moreover, the normalization hypothesis and
Remark 5 implies that 1/β log(ψβA) , β > 0 is uniformly bounded.

Therefore, there exists a subsequence βn →∞, and V Lipschitz, such that on the
uniform convergence

V := lim
n→∞

1

βn
log(ψβnA).

Consider point p0 ∈ B. Another possible normalization for the eigenfunction ψβA
is to assume that ψβA(p0) = 1. We will prefer this latter form.
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By selection of a function V , when the temperature goes to zero (or, β →∞), we
mean the existence of the limit (in the uniform norm)

V := lim
β→∞

1

β
log(ψβA).

The existence of the limit when β →∞ (not just of a subsequence), in the general
case, is not an easy question.

In this section we denote µβA the Gibbs state for the potential βA, i.e. the eigen-
probability of L∗

Ā
, where Ā = A+ logψA − logψA ◦ σ − log λA.

By selection of a measure µ̃∞, when the temperature goes to zero (or, β →∞), we
mean the existence of the limit (in the weak∗ sense)

µ̃∞ := lim
β→∞

µβA.

In some sense V is what one can get in the limit, in the log-scale, from the eigen-
function (at non-zero temperature), and µ̃∞ is the Gibbs state at temperature zero.

Even if A is Lipschitz not always the above limit on µβA, β → ∞, exist. In fact
we will show an interesting example in section 6 (due to A. C. D. van Enter and W.
M. Ruszel) where there is no limit for µβA, as β →∞.

Some theorems in this section are generalizations of corresponding ones in [38]
(which consider only potentials A which depend on two coordinates). Related results
appear in [25] and [26]. Results about selection (or, non selection) in the setting of
Thermodynamic Formalism appear in [5] [4] [9] [36] [8] [40].

Some of the proofs and results presented in the present section are similar to other
ones in Ergodic Optimization [32] and Thermodynamic Formalism, but the main point
is that we have to avoid in the proofs the concept of entropy and the variational
principle of pressure.

Remember that we denote byMσ the set of σ invariant Borel probability measures
over B. As Mσ is compact, given A, there always exists a subsequence βn, such that
µβnA converges to an invariant probability measure.

We consider the following problem: given A : B → R Lipschitz, we want to find
measures that maximize, over Mσ, the value∫

A(x) dµ(x).

We define

m(A) = max
µ∈Mσ

{∫
Adµ

}
.

Any of these measures will be called a maximizing probability measure, which
is sometimes denoted by µ∞. As Mσ is compact, there exist always at least one
maximizing probability measure. It is also true that there exists ergodic maximizing
probability measures. Indeed, the set of maximizing probability measures is convex,
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compact and the extreme probability measures of this convex set are ergodic (can
not be expressed as convex combination of others [33]). Any maximizing probability
measure is a convex combination of ergodic ones [46].

Even when A is Holder the maximizing probability measure µ∞ do not have to be
unique. For instance, suppose that A is Holder and has maximum value just in the
union of two different fixed points (for the shift σ) p0 ∈ B and p1 ∈ B . In this case
the set of maximizing probability measures µ∞ is {t δp0 + (1− t)δp1 | t ∈ [0, 1]}.

Note that δp0
and δp1

are ergodic, but the other maximizing probability measures
are not.

Similar definitions for a potential A : Bi → R and maximization of
∫
Adµ̂, over all

the µ̂ which are σ̂-invariant probability measures, can also be considered. Questions
about selection of measure also make sense.

Definition 1. A continuous function u : B → R is called a calibrated subaction for
A : B → R, if, for any y ∈ B, we have

u(y) = max
σ(x)=y

[A(x) + u(x)−m(A)]. (5)

This can also be expressed as

m(A) = max
a∈M
{A(ay) + u(ay)− u(y)}.

Note that for any x ∈ B we have

u(σ(x))− u(x)−A(x) +m(A) ≥ 0.

The above equation for u can be seen as a kind of discrete version of a sub-solution
of the Hamilton-Jacobi equation [12] [6] [21]. It can be also seen as a kind of dynamic
additive eigenvalue problem [13] [14] [24].

If u is a calibrated subaction, then u+ c, where c is a constant, is also a calibrated
subaction. An interesting question is when such calibrated subaction u is unique up
to an additive constant.

Remember that if ν is invariant for σ, then for any continuous function u : B → R
we have ∫

[u(σ(x))− u(x)] dν = 0

Suppose µ is maximizing for A and u is a calibrated subaction for A.
It follows at once (see for instance [15] [32] [51] for a similar result) that for any x

in the support of µ∞ we have

u(σ(x))− u(x)−A(x) +m(A) = 0. (6)

In this way if we know the value m(A), then a calibrated subaction u for A helps us
to identify the support of maximizing probabilities. The above equation can be true
outside the union of the supports of the maximizing probabilities.

Maximizing probability measures are natural candidates for being selected by µβA,
as β → ∞. But, in our setting, without the maximizing principle of pressure (which
one can take advantage of the classical Thermodynamic Formalism) this is not so
obvious. We address the question in section 3.
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Proposition 10. For any β, we have −‖A‖ < 1
β log λβ < ‖A‖.

Proof: Fix β > 0. We choose x̄ the maximum of ψβA in B and x̃ the minimum of
ψβA in B. Now, if ‖A‖ is the uniform norm of A, we have

λβ =
1

ψβA(x̄)

∫
eβA(a x̄)ψβA(a x̄)da ≤

∫
eβA(a x̄)da ≤ eβ‖A‖ and

λβ =
1

ψβA(x̃)

∫
eβA(a x̃)ψβA(a x̃)da ≥

∫
eβA(a x̄)da ≥ e−β‖A‖ ,

which proves the result.

From now on, we will suppose M = S1 to avoid technical issues. But we claim that
the following results hold for more general connected and compact manifolds.

Considering a subsequence βn we get the existence of a limit 1
βn

log λβn → K, when
n→∞. By taking a subsequence we can assume that is also true that there exists V
Lipschitz, such that V := limn→∞

1
βn

log(ψβnA).
Given y ∈ B, consider the equation

λβn =
1

ψβnA(y)

∫
eβnA(a y)ψβnA(a y)da.

It follows from Laplace method that, when β →∞,

K = max
a∈S1
{A(ay) + V (ay)− V (y)}.

If we are able to show that K = m(A), then we can say that any limit of subse-
quence limn→∞

1
βn

log(ψβnA) is a calibrated subaction, and we will get, finally, that

lim
β→∞

1

β
log λβ A = lim

β→∞

1

β
log λβ = m(A).

Next theorem is inspired by Theorem 1 in [1] and Theorem 3.3 in [28]. It follows
from the last part of its proof that K = m(A).

Theorem 11. Given A Lipschitz there exists u Lipschitz which is a calibrated subac-
tion for A. As a consequence, we have that

lim
β→∞

1

β
log λβ = m(A).

Proof. Suppose A : B → R is Lipschitz.
Given 0 < λ ≤ 1, consider the operator L̂λ : C → C given by,

L̂λ(u)(x) = sup
a∈S1

[A(ax) + λu(ax)].

Given x ∈ B , we denote by ax ∈ S1 one of the points a where the supremum is
attained.
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It is easy to see that for any 0 < λ < 1, the transformation L̂λ is a contraction on
C with the uniform norm. Indeed, given x ∈ B

sup
a∈S1

[A(ax) + λu(ax)]− sup
b∈S1

[A(bx) + λv(bx)] ≤

[A(ax x) + λu(ax x)]− [A(ax x) + λv(ax x)] ≤

λu(ax x)− λv(ax x) ≤ λ||u− v||.

Denote by uλ the corresponding fixed point in C. We want to show that uλ is
equicontinuous. Consider x0, y0 ∈ B. For the given x0 we take the corresponding
ax0
∈M , and then the we get x1 = ax0

x0. By induction, given xj , get xj+1 = axjxj .
We can also can get a sequence yj ∈ B, j ≥ 1, such that, yj = axj−1 ... ax1

ax0
y0.

Note that for all j we have σj(yj) = y0.
As for any j we have uλ(yj) ≥ A(yj+1)− λuλ(yj+1), then

uλ(xj)− uλ(yj) ≤

[A(xj+1)−A(yj+1)] + λ [uλ(xj+1)− uλ(yj+1)].

Therefore, given x0, y0

uλ(x0)− uλ(y0) ≤
∞∑
j=0

λj [A(xj)−A(yj)] ≤

(1− λ)

∞∑
j=0

λj
j∑
i=0

[A(xi)−A(yi)] ≤

sup
j

j∑
i=0

[A(xi)−A(yi)] ≤

||A|| sup
j

j∑
i=0

(
1

2
)jd(x0, y0) < ||A|| 2 d(x0, y0).

This shows that uλ is Lipschitz, and, moreover, that uλ, 0 ≤ λ < 1, is an equicon-
tinuous family. Note the very important point: the Lipschitz constant of uλ depends
on ||A||.

Denote u∗λ = uλ − maxuλ. Using Arzela-Ascoli we get the existence of a subse-
quence λn → 1 such that u∗λn → u.

We claim that u is a subaction.
Indeed, given x ∈ B, as |uλ(x)| ≤ λ |uλ(ax x)|+ |A(ax x)| ≤ λ ||uλ||+ ||A(x)||, then

(1− λ)||uλ|| < C, where C is a constant.
From this follows that there is a constant k, such for some subsequence (of the

previous subsequence λn), which will be also denoted by λn, we have (1−λn)||uλn || →
k.

Note that for any λ
u∗λ(x) = uλ(x)−maxuλ =
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−(1− λ) maxuλ + uλ(x)− λmaxuλ =

−(1− λ) maxuλ + max
a∈S1
{A(ax) + (λuλ(ax)− λmaxuλ)}.

Taking the limit n to infinity for the sequence λn we get

u(x) = −k + max
a∈S1
{A(ax) + u(ax)} = max

a∈S1
{A(ax) + u(ax)− k}.

Now, all we have to show is that k = m(A).
From the above it follows at once that

−u(σ(y)) + u(y) +A(y) ≤ k.

If ν is a σ-invariant probability measure, then,∫
A(y)dν(y) =

∫
[u(σ(y))− u(y) +A(y)] dν(y) ≤ k,

and, this shows that m(A) ≤ k.
Now we show that m(A) ≥ k. Note that for any x there exist y = ax x such that

σ(y) = x, and
−u(σ(y)) + u(y) +A(y) = k.

Therefore, the compact set K = {y | − u(σ(y)) + u(y) + A(y) = k} is such that,
K ′ = ∩n σ−n(K) is non-empty, compact and σ-invariant. If we consider an σ-invariant
probability measure ν with support on K ′, we have that

∫
A(y)dν(y) = k. From this

follows that m(A) ≥ k.

Now we state a general result assuming just that A is continuous (not necessarily
Lipschitz). We refer the reader to Theorem 1 in [23], Proposition 4 in [38], Theorem
2.4 in [28] for related results.

Theorem 12. Given a potential A ∈ C, we have

m(A) = inf
f∈C

max
(a,x)∈ S1×B

[A(a x) + f(ax)− f(x))].

Proof: First, consider the convex correspondence F : C → R defined by F (g) =
max(A+ g). Consider also the subset

G = {g ∈ C : there exists f such that g(ax) = f(ax)− f(x), f ∈ C} 6= ∅.

Now consider the concave correspondence G : C → R ∪ {−∞} taking G(g) = 0, if
g ∈ Ḡ, and G(g) = −∞ otherwise.

Let S be the set of the signed measures over the Borel sigma-algebra of B. Re-
member that the corresponding Fenchel transforms, F ∗ : S → R ∪ {+∞} and G∗ :
S → R ∪ {−∞}, are given by

F ∗(µ̂) = sup
g∈C

[∫
g(ax) dµ̂(ax)− F (g)

]
, and
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G∗(µ̂) = inf
g∈C

[∫
g(ax) dµ̂(ax)−G(g)

]
.

Denote

S0 =

{
µ̂ ∈ S :

∫
f(ax) dµ̂(ax) =

∫
f(x) dµ̂(x) , ∀ f ∈ C

}
.

We denote by M the set of probability measures over B.
Given F and G as above, we claim that

F ∗(µ̂) =

 −
∫

Σ̂

A(y,x) dµ̂(y,x) if µ̂ ∈M

+∞ otherwise
and

G∗(µ̂) =

{
0 if µ̂ ∈ S0

−∞ otherwise
.

We refer the reader to the [23] or [38] for a proof of this claim (which is basically
the same as we need here).

Once the correspondence F is Lipschitz, the theorem of duality of Fenchel-Rockafellar
[47] assures

sup
g∈C

[G(g)− F (g)] = inf
µ̂∈S

[F ∗(µ̂)−G∗(µ̂)] .

sup
g∈G

[
− max

(a,x)∈S1×B
(A+ g)(ax)

]
= inf
µ̂∈Mσ

[
−
∫
A(ax) dµ̂(ax)

]
.

Finally, from the definition of G, the claim of the theorem follows.

3 A definition of entropy for Gibbs states at positive
temperature and selection of probability measure

Given a Lipschitz function A we have that∫
eA(ax)ψA(ax)

λAψA(x)
da = 1 , ∀x ∈ B .

We denote as before

Ā = A+ logψA − logψA ◦ σ − log λA,

where σ : B → B is the usual shift map. In this case the normalized potential Ā
satisfies ∫

M

eĀ(ax)da = 1 , ∀x ∈ B ,

which means LĀ(1) = 1.
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Therefore, ∫
B

[∫
M

eĀ(ax) da

]
dµA(x) = 1.

Note that for a fixed x the value Ā(ax) can not be smaller than zero for all a ∈
M . This is quite different from the analogous case where we consider the shift over
{1, 2.., d}N in the classical Thermodynamic Formalism.

For each a ∈M, x ∈ B, we denote by J(ax) = min{1, eĀ(ax)}.

Definition 2. Given the invariant probability measure µA, associated to the Lipschitz
potential A, we define the entropy of µA as

h(µA) = −
∫

log J(y) dµA(y) > 0.

In other words

h(µA) = −
∫
Ā(y) I{Ā≤0} (y) dµA(y).

The set of probability measures µA, with A Lipschitz, is dense in the set of σ-
invariant probability measures [37].

Note that µA is σ-invariant

−h(µA) =

∫
log J(y) dµA(y) ≤

∫
log

(
eA(y)ψA(y)

λAψA(σ(y))

)
dµA(y) =

∫
AdµA − log λA.

Therefore,

log λA ≤ h(µA) +

∫
AdµA.

For a fixed A consider now for each real value β the corresponding potential βA.
Therefore,

log λβA ≤ h(µβA) + β

∫
AdµβA.

Suppose for a certain subsequence βn we have that µβn A → µ.
If we divide the last inequality by βn, and, taking limit in n, we get

m(A) ≤ lim sup
n→∞

h(µβnA)

βn
+

∫
Adµ.

From the above we can derive:

Theorem 13. Suppose that µ = limn→∞ µβnA, for some subsequence βn, and

lim sup
n→∞

h(µβnA)

βn
= 0,

then, the limit measure µ is a maximizing probability measure.
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Corollary 14. If the maximizing probability measure µ∞ for A is unique, and,

lim sup
β→∞

h(µβA)

β
= 0,

then, µβA, when β →∞, selects the maximizing probability measure µ∞.

4 Analysis of the case in which the potential de-
pends on two coordinates

In this section we suppose the potential depends on two coordinates and the metric
space is M = S1. In this case the Ruelle operator has a simple form. We will make the
usual identification of S1 with [0, 1] (in further sections we will make the identification
of S1 with [0, 2π]). We will present several results from [38] which will be needed in
future sections.

We will need to define the following operators:

Definition 3. Let Lβ , L̄β : C([0, 1])→ C([0, 1]) be given by

Lβψ(y) =

∫
eβA(x,y) ψ(x)dx, (7)

L̄βψ(x) =

∫
eβA(x,y) ψ(y)dy. (8)

We refer the reader to [34] and [49] chapter IV for general results on positive
integral operators. The next theorem (Krein-Ruthman) is well known. It will follow
that, when A depends just on two coordinates (x0, x1), then the eigenfunction of the
Ruelle operator (as defined in previous sections) depends only on the first coordinate
x0 (similar to [55]).

Theorem 15. The operators Lβ and L̄β have the same positive maximal eigenvalue
λβ, which is simple and isolated. The eigenfunctions associated are positive functions.

Let us call ψβ , ψ̄β the positive eigenfunctions for Lβ and L̄β associated to λβ , which
satisfy the normalization condition

∫
ψβ(x) dx = 1 and

∫
ψ̄β(x) dx = 1.

We will define a density θβ : [0, 1]→ R by

θβ(x) :=
ψβ(x) ψ̄β(x)

πβ
, (9)

where πβ =
∫
ψβ(x)ψ̄β(x)dx, and a transition Kβ : [0, 1]2 → R by

Kβ(x, y) :=
eβA(x,y) ψ̄β(y)

ψ̄β(x)λβ
. (10)
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The above expressions are consistent with the results obtained in [22] section 3.
This can be formulated also as a variational pressure problem as we will see soon.

Note that if A(x, y) = A(y, x), then ψβ and ψ̄β are constant, and, therefore θβ is
constant equal to 1. This happen for M = S in the case A is of the form U(x− y) for
a periodic function U . This case will be consider later.

Consider a probability measure ν on [0, 1]2 that can be disintegrated as dν(x, y) =
dθ(x)dKx(y), where θ : [0, 1] → [0,+∞) and K : [0, 1]2 → [0,+∞) are continuous
functions. We will denote this by ν = θK, where θ is a continuous density of probability
on [0, 1].

Definition 4. A probability measure θ on [0, 1] is called stationary for a transition
K(·, ·), if

θ(B) =

∫
K(x,B)dθ(x), for all interval B ∈ [0, 1] .

More explicitly we assume K : [0, 1]2 → [0,+∞) and θ : [0, 1] → [0,+∞) satisfy
the following equations: ∫

K(x, y) dy = 1, ∀x ∈ [0, 1], (11)

∫
θ(x)K(x, y) dxdy = 1, (12)

∫
θ(x)K(x, y) dx = θ(y), ∀ y ∈ [0, 1]. (13)

Given the initial probability measure θ and the transition K, as above, one can
define a Markov process {Xn}n∈N with state space [0, 1] (see [38] for more details).
The measure µ over [0, 1]N which describes this process is

µ(A0...An × [0, 1]N) :=

∫
A0...An

θ(x0)K(x0, x1)...K(xn−1, xn) dxn...dx0

for any cylinder A0...An × [0, 1]N.
If θ is stationary the Markov Process Xn will be stationary.
Note that θβ above is stationary for Kβ(x, y). In this way we can define νβ = θβKβ

on [0, 1]2.
For instance,

µβ,A( [a1, a2]× [b1, b2]× [c1, c2] × [0, 1]N) =

=

∫ a2

a1

∫ b2

b1

∫ c2

c1

θβ(x0)Kβ(x0, x1)Kβ(x1, x2)dx2 dx1 dx0. (14)

The next result is similar to the one described in [55].

Theorem 16. Suppose A is a Holder continuous function. Then the probability mea-
sure µβ,A defined in (14) is the Gibbs state for the potential βA.
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Proof. We need to show that L∗
Ā

(µβ,A) = µβ,A, where βĀ = βA + logψβ − logψβ ◦
σ− log λβ . Indeed, let g ∈ C such that g(x0, x1, ...) = g(x0, ..., xk), by definition of L∗

Ā
we have ∫

B
g dL∗Ā(µβ,A) =

∫
B
LĀ(g) dµβ,A

=

∫
[0,1]k

[ ∫
[0,1]

eβĀ(a,x0)g(a, x0, ..., xk−1) d a

]
θβ(x0)

k−2∏
j=0

Kβ(xj , xj+1)dxk−1...dx0

=

∫
[0,1]k

[ ∫
[0,1]

eβA(a,x0) ψβ(a)

λβψβ(x0)
g(a, ..., xk−1) d a

]
θβ(x0)

k−2∏
j=0

Kβ(xj , xj+1)dxk−1...dx0

=

∫
[0,1]k+1

eβA(a,x0) ψβ(a)

λβ
g(a, ..., xk−1)

ψ̄β(x0)

πβ

k−2∏
j=0

Kβ(xj , xj+1) dxk−1...dx0 da

=

∫
[0,1]k+1

g(a, ..., xk−1) eβA(a,x0) ψ̄β(x0)

λβψ̄β(a)

ψ̄β(a)ψβ(a)

πβ

k−2∏
j=0

Kβ(xj , xj+1) dxk−1...dxoda

=

∫
[0,1]k+1

g(a, x0, ..., xk−1) θβ(a)Kβ(a, x0)

k−2∏
j=0

Kβ(xj , xj+1) dxk−1...dx0da

=

∫
[0,1]k+1

g(x0, x1, ..., xk−1, xk) θβ(x0)

k−2∏
j=0

Kβ(xj , xj+1)Kβ(xk−1, xk) dxk...dx1 dx0.

Hence, for any continuous g∫
B
g(x0, ..., xk) dL∗Ā(µβ,A) =

∫
B
g(x0, ..., xk)dµβ,A.

The entropy (as defined in section 3) of such probability measure µβA is

h(µβA) = −
∫
A(y) I{A−log λβ≤0} (y) dµβA(y) + log λβ .

Definition 5. We denote byM0 the set of all ν = θK on [0, 1]2, where θ is stationary
for K.

Definition 6. For an absolutely continuous probability measure ν ∈M[0,1]2 , given by
a density ν(x, y)dxdy, we denote S[ν] by

S[ν] = −
∫
ν(x, y) log

(
ν(x, y)∫
ν(x, z)dz

)
dxdy . (15)
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Remark.
The S[ν] was called ”penalized entropy” in [38] and it is a kind of relative entropy

with respect to Lebesgue measure. It is different kind of definition of entropy (from
the previous one we consider before).

It is easy to see that any ν = θK ∈M0 satisfies

S[θP ] = −
∫
θ(x)K(x, y) log (K(x, y)) dxdy . (16)

The value S[θK] assume negative values.
We can consider now the variational problem

P (A) = max
ν=θK∈M0

{∫
βA(x, y) dν + S[ν]

}
. (17)

This is equivalent to maximize

max
ν=θK∈M0

{∫
βA(x, y)θ(x)K(x, y)dxdy −

∫
θ(x)K(x, y) log (K(x, y)) dxdy

}
Definition 7. A probability measure ν in M0 is called an equilibrium state for A
(which depends on two coordinates) if attains the maximal value P (A). The value
P (A) is called the pressure (or Free Energy) of A

We refer the reader to [38] for the proof of the following result.

Proposition 17. The stationary measure νβ = θβKβ defined above maximize

β

∫
A(x, y) dν + S[ν],

over all stationary ν = θK ∈M0. Also

P (A) = log λβ =

∫
βA θβKβdxdy + S[θβKβ ].

When the potential A depends just on two coordinates the equation used in the
definition of subaction can be simplified.

Definition 8. A continuous function u : [0, 1] → R is called a [0, 1]- calibrated
forward-subaction if, for any y ∈ [0, 1], we have

u(y) = max
a∈[0,1]

[A(ay) + u(a)−m(A)]. (18)

We refer the reader to [14] for related problems in a different setting. The equation
for u above also appears in problems related to the additive eigenvalue [13] [14].

A function u as above can be seen as a function on x ∈ [0, 1]N, where x =
(x0, x1, x2, x3, ...), which depends just on the first coordinate x0. Therefore, a [0, 1]-
calibrated forward-subaction is a also calibrated subaction (in the previous sense). We
point out that [0, 1]- calibrated forward-subactions do exist (see [38]).
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An interesting question on the case of selection of measures µβ → µ∞ is: what
happens with the measure of a particular subset D of B when T → 0 (or, β → ∞)?
A Large Deviation Principle (see [18] for general references) is true under certain
conditions. We refer the reader to [38] for the proof of the result below.

Theorem 18. If A has only one maximizing probability measure µ∞ and there exist
an unique [0, 1]- calibrated forward-subaction V for A, then the following LDP is true:
for each cylinder D = A0....Ak × [0, 1]N, the following limit exists

lim
β→∞

1

β
lnµβA(D) = − inf

x∈D
I(x) .

where I : [0, 1]N → [0,+∞] is a function defined by

I(x) :=
∑
i≥0

V (xi+1)− V (xi)− (A−m(A))(xi, xi+1) .

Results about Large deviations in the setting of Thermodynamic Formalism appear
in [15] [39].

Definition 9. We say that A : [0, 1]2 → R satisfies the twist condition, if A is C2,
and

∂2A

∂x∂y
6= 0.

This property is an open condition under the right topology.
The next theorem (see [38] for a proof) addresses the question of uniqueness when

we add a magnetic term f(x) to A(x, y). Related results in a different setting appear
in [2] [6]. The above condition for A replaces the convexity of the Lagrangian which
is crucial in Aubry-Mather theory [12].

Definition 10. We will say that a property is generic for A, A ∈ C2([0, 1]2), in Mañé’s
sense, if the property is true for A+ f , for any f , f ∈ C2([0, 1]), in a set G which is
generic (in Baire sense).

This concept was initially introduced in the Aubry-Mather setting in [42].
We will show below that under the twist condition the uniqueness of [0, 1]-forward

backward-subaction is generic in Mañé’s sense.

Theorem 19. Consider the class of all A : [0, 1]2 → R which is C2 and satisfies

the twist condition ∂2A
∂x∂y 6= 0, then there exists a generic set O in C2([0, 1]) (in Baire

sense) such that:

(a) for each f ∈ O, f : [0, 1]→ R, for ”any” A we have that given µ, µ̃ ∈ Mσ two
maximizing measures for A+ f (i.e., m(A+ f) =

∫
(A+ f) dµ =

∫
(A+ f) dµ̃), then

ν = ν̃,

where ν and ν̃ are the projections of µ and µ̃ in the first two coordinates.

(b) for ”any” A the [0, 1]-calibrated forward-subaction for A+ f is unique, for each
f ∈ O (up to an additive constant).
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In the above theorem the potential A is considered the interaction and f the mag-
netic term. Therefore, it claims, among other things, that for ”any” A we have unique-
ness of the calibrated subaction (up to an additive constant) for a generic magnetic
term f .

The next theorem (see [38] for a proof) addresses the question of the graph property
for a probability measure. A related result in the setting of Thermodynamic formalism
appears in [41].

Theorem 20. If A : [0, 1]2 → R is C2, and satisfies the twist condition ∂2A
∂x∂y 6= 0,

then, the projected measure ν on [0, 1]2 of the maximizing probability measure µ∞ (on
B) has support on a graph.

The problem we consider above can be seen as a Transshipment Problem (see [38]).
For related results see also [24] and [16].

The graph property of a measure is of great importance in Aubry-Mather Theory
[12] [21] [43].

5 DLR Gibbs Measures and Transfer Operator

5.1 One-Dimensional Systems and Transfer Operator

Given the potential A we will use the following terminology: Gibbs-TF for A denotes
the set of measures usually considered in the Thermodynamical Formalism (as, for
example, in [45], or in the first part of this paper) and Gibbs-DLR for A the set of
measures constructed as in the Dobrushin-Lanford-Ruelle formulation of Statistical
Mechanics, where the Gibbs measures are obtained from Specification Theory point of
view, for a complete exposition see [27, 48, 50, 53]. For reasons that will be clarified
latter we adopt the notation µA,σ

′
for this measures, where σ′ is an element of the

state space which is called sometimes a boundary condition.
The measures obtained by the the first construction (Section 1) are denoted here

by m = mA, and they are defined over the σ-algebra of B = (S1)N generated by the
cylinder sets. The second one is usually defined over the σ-algebra of Bi = (S1)L

generated by the cylinder sets, where L is any countable set. In order to show the
relation of this two constructions in this paper, we focus on the cases where L = Z.

We will call MA the Gibbs-TF-Z for A, which is, by definition, the natural extension
of mA, the Gibbs-TF for A.

For a large class of potentials (see [27]) we can show that µA,σ
′

is independent of
the choice of σ′ ∈ (S1)N. Here using a very simple argument we give a proof of this
independence using Ruelle operator when one consider free on the left, and a fixed
σ′ ∈ (S1)N boundary conditions. We also show that this unique probability measure
constructed using the Gibbs-DLR approach is equals to the measure MA obtained
in the Gibbs-TF-Z for A. In a forthcoming paper we discus in great generality the
equivalence of Gibbs-TF and Gibbs-DLR for one dimensional systems.
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5.2 Gibbs-DLR Probability Measures on (S1)Z.

For a Bi-measurable function A : Bi → R depending on the two first coordinates, we
associated a family Φ = (ΦΓ)Γ⊂N of functions from Bi to R, given by

ΦΓ(x) =

{ −A(xn, xn+1), if Γ = {n, n+ 1};

0, otherwise.

We call this family Φ an interaction. For each n ∈ N we consider the associated
Hamiltonian

HΦ
Λn(x) = −

n−1∑
k=−n

A(xk, xk+1) , (19)

where Λn = [−n, n] ∩ Z.
The first step to obtain a Gibbs-DLR probability measure for a given A : Bi =

(S1)Z → R depending on the two first coordinates, whit boundary condition σ′ ∈ (S1)N,

is to construct a family of probability measures µΦ,σ′

Λn
over Bi and then take cluster

points in the weak* topology of this family when n→∞. Note that at least one cluster
point exists because of the Banach-Alaoglu Theorem and any element on the set of
these cluster points will be called a Gibbs-DLR measure. Once we take the limit when
n goes to infinity, the sequence of the sets Λn = {−n,−n+1, . . . ,−1, 0, 1, . . . , n−1, n}
converges in the set theoretical sense to Z, which allows for these measures to capture
information in the past and in the future coordinates.

Fixed a configuration σ′ = (σ′0, σ
′
1, .., σ

′
n, ..) ∈ (S1)N, and, a potential A as above,

then, we define the Hamiltonian on Λn for the potential Φ with σ′ right boundary
conditions by

HΦ
Λn(τ |σ′) = −

n−2∑
k=−n

A(τk, τk+1)−A(τn−1, σ
′
n) .

Note that HΦ
Λn

(τ |σ′) can also be considered as a function defined on [0, 2π]2n, i.e.,

HΦ
Λn(τ−n, ..., τn−1|σ′) = −

n−2∑
k=−n

A(τk, τk+1)−A(τn−1, σ
′
n) .

Let M(Λn, σ
′) = {x ∈ (S1)Z | xi = σ′i , ∀ i ≥ n}, dν the Lebesgue probability

measure on S1 (which we identify with [0, 2π]) and dνn is the Lebesgue probability
measure on (S1)n.

The partition function associated to the potential Φ with right boundary condition
σ′ ∈ B on the volume Λn is defined by

ZΦ,σ′

Λn
:=

∫
M(Λn,σ′)

e−H
Φ
Λn

(τ |σ′) dν(τ)

=

∫
[0,2π]2n

e−H
Φ
Λn

(τ−n,...,τ0 ...,τn−1|σ′) dν(τ−n) ... dν(τ0) ... dν(τn−1).
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We restrict our attention to potentials Φ for which the partition ZΦ,σ′

Λn
is finite for any

choice n and σ′. Hence for each n, this defines a probability measure which acts on
continuous functions f : B → R (depending on finite coordinates) by∫

Bi
f dµΦ,σ′

Λn
=

1

ZΦ,σ′

Λn

∫
M(Λn,σ′)

f(τ) e−H
Φ
Λn

(τ |σ′)dν(τ−n)dν(τ−n+1) ... dν(τn−1) .

Note that in this way for any fixed σ′ the probability measure µΦ,σ′

Λn
depends just

on A (and, of course, σ′), thus we could also denoted it µA,σ
′

Λn
. But here we will adopt

the Statistical Mechanics notation µΦ,σ′

Λn
as used in [27] and [50].

For a fixed σ′ we are interested in the limit of µΦ,σ′

Λn
, when n → ∞. Any possible

cluster point of this sequence will be denoted by µA,σ
′

(or, µΦ,σ′). Any one of these is
called a Gibbs state for A with a boundary condition σ′ ∈ B on the right and free on
the left.

Given A : B → R, by the major theorem of section 1, we know there is a maximal
positive eigenvalue λ = λA associated to the eigen-function ψA. We also have, for any
ψ : B → R,

LnAψ(y) =

∫
[0,2π]n

eSnA(τy)ψ(τy) dνn(τ) . (20)

If A depends on two coordinates, then, ψA depends on one coordinate (as we get from

section 4). Note that for any τ ∈ (S1)N we have L2n
A (1) (σn(τ)) = ZΦ,τ

Λn
, where σ is the

shift on (S1)N and Ln
Ā

1 = 1 for any n ∈ N, where

Ā = A+ logψA − logψA ◦ σ − log λA.

Let Φ̄ be the potential defined by Ā and π the natural projection of (S1)Z to (S1)N.
(analogous to the case for the potential A), we set for any Borelian C ⊂ B

π µΦ̄,σ′

Λn
(C) =

1

ZΦ̄,σ′

Λn

∫
M(Λn,σ′)

1C(τ)e−H
Φ̄
Λn

(τ |σ′)dν(τ) .

We point out that a potential A which depends on two coordinates can be seen as
a potential defined either in (S1)N, or (S1)Z. Another important remark is when the
spin variables take values in the close interval [−1, 1] these models are known in the
literature as continuous Ising model.

Proposition 21. Consider a fixed σ′ ∈ B = (S1)N Given A : Bi → R, which depends
on two coordinates, if Ā is its normalized associated potential then for any cluster point
πµΦ̄,σ′ we have that

m = πµΦ̄,σ′ ,

where m = mĀ is the Gibbs-TF measure for Ā.

We will show that lim
n→∞

πµΦ̄,σ′

Λn
= m, so this limit does not depend on the fixed σ′

we choose.
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Proof. Consider a given f : B → R which depends on finitely many coordinates, (let’s
say r > 0). Note that

HΦ̄
Λn(τ |σ′) = −

n−2∑
k=−n

Ā(τk, τk+1)− Ā(τn−1, σ
′
n) ,

and that ZΦ̄,σ′

Λn
= 1. Suppose that n > r. By definition∫

f d π µΦ̄,σ′

Λn
=

∫
M(Λn,σ′)

f(τ) e−H
Φ̄
Λn

(τ |σ′)dν(τ)

=

∫
[0,2π]2n

f(τ0, ..., τr) e
−HΦ̄

Λn
(τ−n...τn−1|σ′)dν(τ−n)...dν(τn−1)

=

∫
[0,2π]n

f(τ0, ..., τr)e
∑n−2
k=0 Ā(τk,τk+1)+Ā(τn−1,σ

′
n) ×

×

(∫
[0,2π]n

e
∑−1
k=−n Ā(τk,τk+1)dν(τ−n)...dν(τ−1)

)
dν(τ0) ... dν(τn−1)

=

∫
[0,2π]n

f(τ0, ..., τr)e
∑n−2
k=0 Ā(τk,τk+1)+Ā(τn−1,σ

′
n)dν(τ0) ... dν(τn−1).

where in the last equation we used n times
∫

[0,2π]
eĀ(x,y)dν(x) = 1.

In this way, ∫
f d π µΦ̄,σ′

Λn
= LnĀ(f)(σn(σ′)).

Is is known from section 1 that Ln
Ā

(f) converges uniformly to
∫
f dm, as n goes

to infinity, where m is Gibbs-TF for A or (Ā). As the convergence of Ln
Ā

(f), when

n→∞, is uniform, then limn→∞ πµΦ̄,σ′

Λn
= m

Corollary 22. For any σ′ ∈ (S1)N, and, any f which depends on finitely many coor-
dinates ∫

M(Λn,σ′)
f(τ) e−H

Φ̄
Λn

(τ |σ′)dν(τ−n)dν(τ−n+1) ... dν(τn−1)∫
(S1)Λn

f(τ) e−H
Φ̄
Λn

(τ)dν(τ−n)dν(τ−n+1) ... dν(τn−1)dν(τn)
→ 1 ,

when n→∞.

Proof. This follows easily from the above because the convergence of Ln
Ā

(f) is uniform.
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Proposition 23. Suppose σ′ ∈ (S1)N. Given A : Bi → R, which depends on two
coordinates and, a coboundary h : Bi → R, which depends on one coordinate (the 0
coordinate), and, such that

Ā = A+ h− h ◦ σ̂ + log λ,

where σ̂ is the shift on Bi, then

π(µΦ,σ′) = π(µΦ̄,σ′).

Proof. Consider a function f : B → R which depends on finite coordinates f(τ0, τ1, .., τk),
k > 0. We have first that

HΦ̄
Λn(τ |σ′) = −Ā(τ−n, τ−n+1)−

n−2∑
k=−n+1

Ā(τk, τk+1)− Ā(τn−1, σ
′
n)

= HΦ
Λn(τ |σ′) + h(σ′n)− h(τ−n)− 2n log λ.

Hence
−HΦ

Λn(τ |σ′) = −HΦ̄
Λn(τ |σ′) + h(σ′n)− h(τ−n)− 2n log λ.

Therefore ∫
M(Λn,σ′)

f(τ) e−H
Φ
Λn

(τ |σ′) dν(τ) =

λ−2n eh(σ′n)

∫
M(Λn,σ′)

e−h(τ−n) f(τ0, .., τk) e−H
Φ̄
Λn

(τ |σ′) dν(τ−n) ... dν(τn−1),

by taking f = 1 we have

ZΦ,σ′

Λn
=

∫
M(Λn,σ′)

e−H
Φ
Λn

(τ |σ′) dν(τ) =

λ−2n eh(σ′n)

∫
M(Λn,σ′)

e−h(τ−n) e−H
Φ̄
Λn

(τ |σ′) dν(τ−n) ... dν(τn−1).

= λ−2n eh(σ′n)L2n
Ā (e−h)(σn(σ′)).

We already shown in the previous sections that

L2n
Ā (e−h)(σn(σ′)) →

∫
e−h dmĀ,

uniformly in n. Therefore, Z Φ,σ′

Λn
∼ λ−2n eh(σ′n)

∫
e−h dmĀ.

We also have∫
M(Λn,σ′)

e−h(τ−n) f(τ0, τ1, .., τk) e−H
Φ̄
Λn

(τ |σ′) dν(τ) =

∫
[0,2π]n

f(τ)e
∑n−2
k=0 Ā(τk,τk+1)+Ā(τn−1,σ

′
n) ×
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×

(∫
[0,2π]n

e−h(τ−n)e
∑−1
k=−n Ā(τk,τk+1)

−1∏
i=−n

dν(τi)

)
n−1∏
k=0

dν(τk) =

∫
[0,2π]n

f(τ)e
∑n−2
k=0 Ā(τk,τk+1)+Ā(τn−1,σ

′
n)(LnĀ(e−h)(τ))

n−1∏
k=0

dν(τk) =

∫
[0,2π]n

f(τ)e
∑n−2
k=0 Ā(τk,τk+1)+Ā(τn−1,σ

′
n)

(
LnĀ(e−h)(τ)−

∫
e−hdmĀ

) n−1∏
k=0

dν(τk)+

+

∫
[0,2π]n

f(τ)e
∑n−2
k=0 Ā(τk,τk+1)+Ā(τn−1,σ

′
n)

(∫
e−hdmĀ

) n−1∏
k=0

dν(τk)

→
∫

fdmĀ

∫
e−hdmĀ.

where in the convergence we used the fact that, given any ε > 0, there exists Nε such
that, for n > Nε, we have

∣∣∣∣∣
∫

[0,2π]n
f(τ)e

∑n−2
k=0 Ā(τk,τk+1)+Ā(τn−1,σ

′
n)

(
LnĀ(e−h)(τ)−

∫
e−hdmĀ

) n−1∏
k=0

dν(τk)

∣∣∣∣∣ <
< ε

∫
[0,2π]n

f(τ)e
∑n−2
k=0 Ā(τk,τk+1)+Ā(τn−1,σ

′
n)
n−1∏
k=0

dν(τk) =

= εLnĀ(f)(σn(σ′)) < 2ε

∫
fdmĀ ,

which means that the first integral vanishes when n→∞, while the second integral is∫
[0,2π]n

f(τ)e
∑n−2
k=0 Ā(τk,τk+1)+Ā(τn−1,σ

′
n)

(∫
e−hdmĀ

) n−1∏
k=0

dν(τk) =

= LnĀ(f)(σn(σ′))

∫
e−hdmĀ →

∫
fdmĀ

∫
e−hdmĀ .

Finally, ∫
M(Λn,σ′)

f(τ) e−H
Φ
Λn

(τ |σ′) dν(τ)

ZΦ,σ′

Λn

=
λ−2n eh(σ′n)

∫
M(Λn,σ′)

e−h(τ−n) f(τ) e−H
Φ̄
Λn

(τ |σ′) dν(τ)

ZΦ,σ′

Λn

∼

∫
M(Λn,σ′)

e−h(τ−n) f(τ) e−H
Φ̄
Λn

(τ |σ′) dν(τ)∫
e−hdmĀ

→
∫

fdmĀ

Therefore, πµΦ,σ′ = πµΦ̄,σ′ .
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Corollary 24. Consider a general σ′ ∈ B. Given A : B → R, then,

mA = πµΦ,σ′ ,

where m = mA is the Gibbs-TF for A.

Proof. It follows from Ā = A+ logψA − logψA ◦ σ − log λA.

According to [27] Part III page 289, for any σ′ the probability measure µA,Φ,σ
′

is
invariant for σ̂ acting on (S1)Z.

By definition, the Gibbs-FT-Z state MA on (S1)Z, is the natural extension of mA,
and, it is also invariant for σ̂ acting on (S1)Z.

Proposition 25. Suppose A : (S1)Z → R depends on two coordinates, and, consider
σ′ ∈ B, then

µΦ,σ′ = MA.

Proof. µΦ,σ′ and MA are both the natural extension of mA.

Proposition 26. Suppose A : (S1)Z → R depends on two coordinates, and, consider
σ′, σ′′ ∈ B, then

µΦ,σ′ = µΦ,σ′′ .

Proof. µΦ,σ′ and µΦ,σ′′ are both the natural extension of mA.

The final conclusion is that, if the potential depends on two coordinates, then the
Gibbs probability measure on (S1)Z in both settings, Thermodynamic Formalism and
Statistical Mechanics via a boundary condition σ′ on the right side, coincide.

Now we will analyze the free-boundary case. Remember that

HΦ
Λn(τ) = −

n−1∑
k=−n

A(τk, τk+1) .

We are going to define the Gibbs probability measure in the sense of Statistical
Mechanics with free boundary condition on the left and on the right. For a given
n > 0,

ZΦ
Λn =

∫
(S1)Λn

e−H
Φ
Λn

(τ) dν(τ−n)dν(τ−n+1) ... dν(τn−1)dν(τn)

will be the partition function which corresponds to the case of free a boundary condi-
tion on the right and on the left.
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For each n, this defines a probability measure which acts on continuous functions
f (depending on finite coordinates) by∫

f d µΦ
Λn =

1

ZΦ
Λn

∫
(S1)Λn

f(τ) e−H
Φ
A,Λn

(τ)dν(τ−n)dν(τ−n+1) ... dν(τn−1) dν(τn).

Any weak limit of subsequences of µΦ
Λn

will be called a Gibbs state for A with a
free boundary condition on the right and on the left.

It follows from Corollary 1 above that any Gibbs state for A with a free boundary
condition on the right and on the left is equal to MA.

The result we will analyze in the next section will be the case of a free boundary
condition on the right and on the left.

6 An example by A. C. D. van Enter and W. M.
Ruszel where there is no selection

In this section we will consider A depending on its first neighbors, and having the form
A(x) = A(x0, x1) = U(x0 − x1).

We want to show a particular example (introduced by [20]), where the potential is
not continuous and is of the form: Ũ : [0, 2π]→ R is a function such that Ũ |[an,bn), is
constant for each n and equal to cn, where [an, bn), n ∈ N is a partition of [a, b].

We will show that for each positive β we can also consider an extension of Gibbs-
TF, say µβ,Ũ , over B and also that this measure coincides with the Gibbs-DLR for this

potential Ũ . In [20] the authors have shown that there is no selection of the family
µβ,Ũ when β →∞.

We will present here all the details of the proof of this non-trivial result.
Basically, we will show that

∫
IB dµβ,Ũ does not converge when β → ∞, for a set

B which depends just on the coordinates (x0, x1). Therefore, this is also the same as
to say that

∫
IB dµ̂β,Ũ does not converge (see Remark 4 just before proposition 6).

The main result of this section is theorem 32, which is a consequence of corollary
30 and lemma 31. Subsection 6.1 shows that results of previous sections are still valid
even if the potential A belongs to certain classes of non-continuous potentials including
the potential of [20].

6.1 Gibbs Measures for Non-continuous Potentials and DLR
formulation of Statistical Mechanics

So far we have defined Gibbs Measures for Holder continuous potentials in sections 1
(general case) and 4 (nearest neighbors interaction, i.e. potential depending on two
coordinates). In the section 4 we gave an alternative definition based on transition
kernels associated to a certain potential (or Hamiltonian) A, and proved that this
definition is equivalent to the one of section 1.
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We will now show that our definition coincides with the usual one in Statistical
Mechanics, in the case of a certain special non-continuous potential depending on two
coordinates. We assume, among other things, the form Ã(x) = Ã(x0, x1) = Ũ(x0−x1),
where Ũ : S1 → R is a bounded L1 function, which is pointwise approximated by Holder
functions Un. This case will cover the important example to be described later. A
potential of this form is called symmetric.

First we will show that the main results of Section 4 are true for this potential
Ã(x) = Ũ(x0 − x1), which is no longer continuous.

Using the notation described in section 4, let LβŨ , L̄βŨ : C([0, 2π]) → C([0, 2π])
be given by

LβŨψ(y) =
1

2π

∫ 2π

0

eβŨ(x−y) ψ(x)dx, (21)

L̄βŨψ(x) =
1

2π

∫ 2π

0

eβŨ(x−y) ψ(y)dy. (22)

for any y ∈ [0, 2π].
In order to simplify the notation we denote Lβ instead of LβŨ .

Lemma 27. The operators Lβ and L̄β preserve the set of continuous functions in
[0, 2π], sending continuous functions to uniformly continuous functions. Moreover, a
bounded function is mapped to an uniformly continuous one.

The fact that continuous functions are preserved implies the compactness of the
operator, as we can see in pages 43 and 47 of [11].

Proof. Consider a fixed β and the operator Lβ . Let f be a continuous function.
Fix ε > 0. Let Ac be a continuous function such that

‖Ã−Ac‖L1 <
ε

4‖f‖C0

.

Here we use the L1 norm on the functions defined on the one-dimensional set [0, 2π].
Such a function exists because continuous functions are dense in Lp[0, 2π] for p ≥ 1.

Let Kc(x, y) = Ac(x− y). We have Ã = Ac + (Ã−Ac)
Moreover, let δ > 0 be such that

|Ac(z)−Ac(w)| < ε

2‖f‖C0

if |z − w| < δ.
Suppose |y1 − y2| < δ. Then we have

|L(f)(y1)− L(f)(y2)| =
∣∣∣∣∫ K(x, y1)f(x)dx−

∫
K(x, y2)f(x)dx

∣∣∣∣
≤
∫
|Ac(x− y1)−Ac(x− y2)| |f(x)|dx+
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+

∫
|(Ã−Ac)(x− y1)||f(x)|dx+

∫
|(Ã−Ac)(x− y2)||f(x)|dx < ε .

The proof of the next theorem is a small modification of the proof of Theorem 3 of
[38]

Theorem 28. The operators Lβ and L̄β have the same positive maximal eigenvalue
λβ, which is simple and isolated. The eigenfunctions associated to these operators, say
ψβ and ψ̄β, are positive functions.

Proof. We can see that Lβ is a compact operator, because Lemma 27 shows that
the image of the unity closed ball of C([0, 1]) under Lβ is an equicontinuous family
in C([0, 1]). Thus, we can use Arzelà-Ascoli theorem to prove the compactness of Lβ
(see also Chapter IV, section 1 of [49]).

The spectrum of a compact operator contains a sequence of eigenvalues that con-
verges to zero, possibly contains zero. This implies that any non-zero eigenvalue of
Lβ is isolated (i.e. there is no sequence in the spectrum of Lβ which converges to a
non-zero eigenvalue).

The definition of Lβ now shows that Lβ preserves the cone of positive functions in
C([0, 1]), sending a point in this cone to the interior of the cone. This means that Lβ
is a positive operator.

The Krein-Ruthman theorem (Theorem 19.3 of [17]) implies that there exists a
positive eigenvalue λβ , which is maximal (i.e. if λ 6= λβ is in the spectrum of Lβ
then λβ > |λ|.) and simple (i.e. the eigenspace associated to λβ is one-dimensional).
Moreover λβ is associated to a positive eigenfunction ψβ .

If we proceed in the same way as in [38], we obtain the same conclusions about the
operator L̄β , and we get the respective eigenvalue λ̄β and eigenfunction ψ̄β .

In order to prove that λ̄β = λβ , we use the positivity of ψβ and ψ̄β and the fact
that L̄β is the adjoint of Lβ . (Here we see that our operators can be, in fact, defined
in the Hilbert space L2([0, 1]), which contains C([0, 1]) ). We have < ψβ , ψ̄β >=∫
ψβ(x)ψ̄β(x)dx > 0, and

λβ < ψβ , ψ̄β >=< Lβψβ , ψ̄β >=< ψβ , L̄βψ̄β >= λ̄β < ψβ , ψ̄β > .

By the periodicity of Ũ , LβŨψ(1) and L̄βŨ (1) are independent of x. Therefore

ψβ,Ũ (x) = ψ̄β,Ũ (x) = 1 are the eigenfunctions associated to the maximal eigenvalue
λβ,Ũ .

It is easy to see that

λβ,Ũ =
1

2π

∫ 2π

0

eβŨ(x−y) dy .

In the notation section 4, θβ,Ũ (x) = 1 and the transition Kernel is given by

Kβ,Ũ (x, y) :=
eβŨ(x−y)

λβ
.
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For instance, for any cylinder

µβ,Ũ (A0...Ak) =

∫
A0...Ak

eβ
∑k−1
i=0 Ũ(xi−xi+1)

λkβ
dxk ... dx0.

This measure does not came from a Hölder potential, but we can approximate this
measure by Gibbs-TF measures associated to Hölders potentials, as we will see next.

Let us now analyze the case A(x) = A(x0, x1) = U(x0 − x1) where U : R → R is
a Holder continuous function 2π-periodic. By the same arguments used above, it is
easy to see that ψβ,U (x) = ψ̄β,U (x) = 1 are the the eigenfunctions of the operators
Lβ,U , L̄β,U associated to the maximal eigenvalue λβ,U (see section 4), where

λβ,U =
1

2π

∫ 2π

0

eβU(x−y) dy .

As in section 4, θβ,U (x) = 1 and the transition Kernel is given by

Kβ,U (x, y) :=
eβU(x−y)

λβ
.

Hence, for any cylinder

µβ,U (A0...Ak) =

∫
A0...Ak

eβ
∑k−1
i=0 U(xi−xi+1)

λkβ
dxk ... dx0.

By theorem 16 we see that µβ,U = mU , the Gibbs-TF for U .

Let now Ũ be a L1 potential such that there exists an uniformly bounded sequence
of Holder continuous potentials Un converging point wise to Ũ .

By the Dominated Convergence Theorem, we have that

λβ,Un =
1

2π

∫ 2π

0

eβUn(x−y) dy → 1

2π

∫ 2π

0

eβŨ(x−y) = λβ,Ũ ,

as k →∞, and also for any cylinder A0...Ak, we have

µβ,Un(A0...Ak)→
∫
A0...Ak

eβ
∑k−1
i=0 Ũ(xi−xi+1)

λkβ
dxk ... dx0 = µβ,Ũ (A0...Ak)

as k →∞.
Note that the measure µβ,Ũ coincides with the Gibbs-DLR measure of statistical

mechanics in the special case of nearest neighbors interaction of the kind Ã(x) =
Ã(x0, x1) = Ũ(x0 − x1) as can be seen, for example, in [27]. We also remark that 1

λkβ

is the partition function of DLR formulations of statistical mechanics.
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6.2 One-dimensional Systems With Symmetric Potentials

To explain the no selection measure theorem we will use the formalism introduced in
last section. Here we take L = Z which is the origin of the term “one-dimensional” in
the title of this section. We assign for each i ∈ Z the measure space (S1,B, ν), where
ν is the Lebesgue probability measure on the circle. For each n ∈ N we denote by
Λn =: [−n, n] ∩ Z. We will use free conditions on the left and on the right side.

For convenience, we use the natural measure isomorphism between the Bernoulli
spaces (S1)Z and [0, 2π)Z to define the Hamiltonian we introduced before in (S1)Z. Let
Φ = (ΦΓ)Γ⊂L be a family of functions on [0, 2π)Z, such that

ΦΓ(θ) =

{
U(θk − θk+1), if Γ = {k, k + 1};

0, otherwise.

where U is a potential defined by the 2π-periodic extension of

Ũ(x) =

∞∑
j=1

cj1Aj (x) ,

and {Aj}j≥1 is a partition of [0, 2π) given by intervals of the form Aj = [aj , bj).
Using the isomorphism and the family Φ mentioned above, the Hamiltonian in the

finite volume Λn, with boundary condition x′, will be given by the following expression,
if x = (θk)k∈Z

HΛn(xΛnx
′
Λcn

) = −
n−1∑
k=−n

U(θk − θk+1)− U(θ−n − θ′−n−1)− U(θn − θ′n+1). (23)

The family Φ we are considering is associated to a potential A which depends only
on the nearest-neighbors and given by A(x, y) = U(x − y). We can prove (see [48])
that for each fixed β ∈ (0,+∞), the set Gβ,Φ is a singleton set and its unique measure
denoted by µβA is given by

µβA = w − lim
Λn↗N

µβ,ΦΛn
,

where for all n ∈ N and E ∈ Bi

µβ,ΦΛn
(E) =

1

Zβ,ΦΛn

∫
(S1)Λn

1πΛn (E)(θ) exp

(
β

n−1∑
k=−n

U(θk − θk+1)

)
n∏

k=−n

dν(θk). (24)

From now on we call µβ,ΦΛn
the Gibbs measure in the volume Λn for the Hamiltonian

(23) at inverse temperature β.

We are using above free boundary conditions on the left and on the right side.

We will consider here a real parameter β, wich means the inverse of the tempera-
ture, and the Gibbs probability measure µ̂βA over Bi = (S1)Z (see the considerations
just above proposition 6).
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Note that if U has a unique maximum at y = 0 ∈ S1, then the support of any
maximizing probability measure µ∞ for A(x, y) = U(x− y) is always contained in the
set

K = {x = (...x−2, x−1, x0, x1, x2, ...) : xi = c ∈ S1, ∀i ∈ Z} ⊂ Bi.

All points in K are fixed points for σ̂. The above set K can be indexed by c ∈ S1.
Each fixed point x in this set can be denoted by xc, where c ∈ S1. The corresponding
maximizing probability measure for A over (S1)Z is δxc .

Given any probability measure P over S1, we can consider the probability measure
ν over (S1)Z given by ν =

∫
δxcdP (c). The general maximizing probability measure

for A is of this form.
Suppose now that U has two strict maximals at y = 0 ∈ S1 and at y = π. In this

case, the support of any maximizing probability measure for A(x, y) = U(x − y) is
always contained in the set K = K1 ∪ K2, where

K1 = {x = (...x−2, x−1, x0, x1, x2, ...) : xi = c ∈ S1, ∀i ∈ Z} ⊂ Bi,

and

K2 = {x = (...x−2, x−1, x0, x1, x2, ...) : xi+1 − xi = π ∈ S1, ∀i ∈ Z} ⊂ Bi.

The set K1 is called the set of ferromagnetic states, and, the set K2 is called the set
of anti-ferromagnetic states. The points in K2 have σ̂-period equal to two. A similar
result to the above is true for the general maximizing probability measure for A.

Now we will state proposition 29 and its corollary 30, which, together with lemma
31, will be used to prove the main result of this section, the non-selection theorem 32.

Proposition 29. Let µβ,ΦΛn
be the Gibbs measure in the volume Λn, defined by (24).

For any fixed j ∈ N and k ∈ {−n, . . . , n− 1}, if

Bk,j = {(θ−n, . . . , θn) ∈ (0, 2π]2n+1 : θk − θk+1 ∈ Aj},

then

µβ,ΦΛn
(Bk,j) =

1

Z(β)
ν(Aj)e

βcj ,

where

Z(β) =
1

2π

∫
(0,2π]

eβU(x)dx,

and ν(Aj) is the Lebesgue probability measure of Aj.

In fact, to prove theorem 32, we will only need to consider the Borel sets Bj = {θ0−
θ1 ∈ Aj} ⊂ Bi, j ∈ N, because we are interested in estimate µβA(Bj) =

∫
IBj dµβA,

for each j, when β →∞.
To state corollary 30 we will consider the potential introduced in [20].
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Corollary 30. Let ε > 0. Consider the special case where

Ũ(x) =

∞∑
i=1

3

22i+1
1I2i(x) +

∞∑
i=1

3

22i+2
1I2i+1

(x− π) +
1

4
1I1
(
x− π

)
,

where Ii = [− ε
3i

2 ,
ε3
i

2 ]. For each j ∈ N we define the ring Aj as follows. If j is even,
then Aj = A2i = I2i\I2i+2, and if j is odd then Aj = A2i+1 = I2i+1\I2i+3 + π. For
any fixed j ∈ N and k ∈ {−n, . . . , n− 1}, we have

µβA({θk − θk+1 ∈ Aj}) = µβ,ΦΛn
({θk − θk+1 ∈ Aj}) =

1

Z(β)
ν(Aj) exp

(
β

2
− β

2j+1

)
,

where

Z(β) =
1

2π

∫
(0,2π]

eβU(x)dx

and
ν(Aj) = ε3j − ε3j+2

.

In particular,

µβA({θ0 − θ1 ∈ Aj}) =
1

Z(β)
ν(Aj) exp

(
β

2
− β

2j+1

)
=

eβ/2

Z(β)
exp

(
− β

2j+1
+ log

(
ε3j − ε3j+2

))
(25)

Figure 1: The graph of the potential U .

Remark 6. Before proceeding to the proof of the proposition we remark that repeated
applications of Fubini’s Theorem show that the partition function in the volume Λn
for the potential A satisfies

Zβ,ΦΛn
= Z(β)2n.
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Proof of Proposition. Let j ∈ N and k ∈ {−n, . . . , n− 1}. By definition we have

µβ,ΦΛn
({θk − θk+1 ∈ Aj}) =

=
1

Zβ,ΦΛn

∫
(0,2π]2n+1

1Bk,j (θ−n, . . . , θn) exp

(
β

n−1∑
s=−n

U(θs − θs+1)

)
n∏

i=−n
dν(θi).

Using the properties of the exponential function, we have that the above integral
is given by ∫

(0,2π]2n+1

1Bk,j (θ)

n−1∏
s=−n

exp (βU(θs − θs+1))

n∏
i=−n

dν(θi). (26)

To simplify the exposition we suppose that k = −n. The following explanation can
easily be modified to work in the general case just by reordering the terms, which can
be done by Fubini’s Theorem. In the case k = −n it follows from Fubini’s Theorem
that (26) is equal to∫

(0,2π]2n
1B−n,j (θ)

n−2∏
s=−n

eβU(θs−θs+1)

(∫
(0,2π]

eβU(θn−1−θn)dν(θn)

)
n−1∏
i=−n

dν(θi).

By the periodicity of U it follows that the integral in parenthesis is independent of θn−1

and equal to Z(β). Proceeding by induction, we can see that the above expression
simplifies to

(Z(β))2n−1

∫
(0,2π]2

1B−n,j (θ)e
βU(θ−n−θ−n+1)dν(θ−n)dν(θ−n+1).

To evaluate this, we consider the iterated integral where the most internal integral is
made in the variable θ−n, with θ−n+1 fixed. For any fixed value of θ−n+1, whenever
θ ∈ B−n,j we have that θ−n ∈ Aj + θ−n+1. In this set the potential U is constant, i.e.,

U(θ−n − θ−n+1) = cj .

From these observations the previous integral is simply

(Z(β))2n−1

∫
(0,2π]

∫
Aj+θ−n+1

eβcjdν(θ−n)dν(θ−n+1) ,

which is equal to

(Z(β))2n−1eβcj
∫

(0,2π]

∫
Aj+θ−n+1

dν(θ−n)dν(θ−n+1).

Finally by the translation invariance property of the Lebesgue measure we end up with

(Z(β))2n−1eβcjν(Aj). (27)
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Dividing this value by the partition function, we get

µβ,ΦΛn
({θk − θk+1 ∈ Aj}) =

ν(Aj)

Z(β)
eβcj .

Note that for |k| < n, this expression does not depend on n. From this follows
easily that for |k| < n and j ∈ N,

µβ,ΦΛn
({θk − θk+1 ∈ Aj}) = µβA({θk − θk+1 ∈ Aj}).

Proof of Corollary.
Follows from the fact that, if j = 2i and x ∈ A2i then

U(x) =

i∑
l=1

3

22l+1
=

3

8

i−1∑
l=0

1

4l
=

3

8

(
1− 1

4i

1− 1
4

)

=
1

2

(
1− 1

4i

)
=

1

2
− 1

22i+1
=

1

2
− 1

2j+1
.

For the other hand, if j = 2i+ 1 and x ∈ A2i+1 we have that

U(x) =
1

4
+

i∑
l=1

3

22l+2
=

1

4
+

3

16

i−1∑
l=0

1

22l

=
1

4
+

3

16

(
1− 1

4i

1− 1
4

)
=

1

4
+

1

4

(
1− 1

4i

)
=

1

2
− 1

22i+2
=

1

2
− 1

2j+1
.

6.3 Maximizing µβA(Bk,j)

Now we will present some useful calculations to compute µβA(Bk,j). We point out
that we will need in the future just the case k = 0.

Let

fβ(x) := − β

2x+1
+ log

(
ε3x − ε3x+2

)
.
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The maximum of this function can be found by derivation with respect to x.

f ′β(x) = − d

dx

β

2x+1
+

d

dx
log
(
ε3x − ε3x+2

)

=
β log 2

2x+1
+
ε3x(log ε log 3)3x − 9ε3x+2

(log ε log 3)3x

ε3x − ε3x+2

=
β log 2

2x+1
+ (log ε log 3)3x

(
ε3x − 9ε3x+2

ε3x − ε3x+2

)

=
β log 2

2x+1
+ (log ε log 3)3x

(
ε3x − 9ε3x+2

ε3x − ε3x+2

)
.

If x is large enough the equation f ′(x) = 0 is solvable and the solution is implicitly
given by

0 =
β log 2

2x+1
+ (log ε log 3)3x

(
ε3x − 9ε3x+2

ε3x − ε3x+2

)
,

which is equivalent to

β = 6x
−2 log ε log 3

log 2

(
ε3x − 9ε3x+2

ε3x − ε3x+2

)
. (28)

The fraction appearing in the above equation can be rewritten as

θ(ε, x) ≡ ε3x

ε3x
1− 9ε(3x+2−3x)

1− ε(3x+2−3x)
=

1− 9ε8·3x

1− ε8·3x . (29)

6.4 An important Lemma

In this subsection we present an important lemma that will help us to estimate the
probability µβA(Bk,j).

Lemma 31. Let (Ω,B) be a measurable space and (Cj)j∈N a measurable partition of
Ω. For any positive β let Pβ be a probability measure in (Ω,B) such that

Pβ(Cj) =
1

Z̄(β)
exp

(
− β

2j+1
+ log

(
ε3j − ε3j+2

))
where Z̄(β) is a normalizing constant and ε > 0. Given δ > 0, there exist an εδ > 0
such that, for any 0 < ε < εδ, for all j ∈ N, we have

Pβj (Cj) > 1− δ , where βj is given by

βj = 6j2Cε
log 3

log 2
θ(ε, j) with θ(ε, j) =

1− 9ε8·3j

1− ε8·3j and Cε = − log ε.
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Remark. A more careful analysis of the proof presented here shows that the above
lemma also works for a slightly different potential U , where we replace in the initial
definition the terms 2j+1 and 3j , by (1 + δ)j+1 and (1 + γ)j , respectively, given that
0 < δ < γ.
Proof.

Note that θ(ε, x) is an increasing function of x, and has limit equal to 1 when ε→ 0
or x→ +∞. Consider the function

fβ(x) = − β

2x+1
+ log

(
ε3x − ε3x+2

)
= − β

2x+1
− Cε3x + log

(
1− ε8.3x

)
. (30)

From (28) and (29) it follows that its critical point x0 has to satisfy

β = 6x02Cε
log 3

log 2
θ(ε, x0) (31)

Note that the last equation allows us to obtain the maximum point x0 of fβ , thus
making x0 = x0(β) an increasing (therefore invertible) and unbounded function of β.
Arguing in the inverse direction, for each x0 = j0 ∈ N we can choose β = β(j0) as the
unique solution to (31), which means j0 is the maximum point of fβ(j0).

Fix now j0 ∈ N. If we set

κxε = log
(

1− ε8.3x
)
,

(note that κxε is an increasing function of x) it follows from (30) and (31) that, for any
k ∈ Z

fβ(j0)(j0 + k) = − β(j0)

2j0+k+1
− Cε3j0+k + κj0+k

ε (32)

= −6j02Cε
log 3

log 2
· θ(ε, j0)

2j0+k+1
− Cε3j0+k + κj0+k

ε

= −3j0
[
Cε

log 3

log 2
· θ(ε, j0)

2k
+ Cε3

k

]
+ κj0+k

ε . (33)

Now we will use these identities to get an upper bound for
Pβ(j0)(Cj0+k)

Pβ(j0)(Cj0 ) . Before going

to the upper bound computations we prove:
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Identity 1. For any integer k ≥ −j0 + 1, we get from (33) the following identity

Pβ(j0)(Cj0+k)

Pβ(j0)(Cj0)
=
efβ(j0)(j0+k)

efβ(j0)(j0)
=

exp
(
−3j0

[
Cε

log 3
log 2 ·

θ(ε,j0)
2k

+ Cε3
k
]

+ 3j0
[
Cε

log 3
log 2 · θ(ε, j0) + Cε

]
+ κj0+k

ε − κj0ε
)

=

exp
(
−3j0Cε

[
log 3
log 2 ·

θ(ε,j0)
2k

+ 3k − log 3
log 2 · θ(ε, j0)− 1

]
+ κj0+k

ε − κj0ε
)

=

exp
(
−3j0Cε

[
log 3
log 2 ·

(
θ(ε,j0)

2k
− θ(ε, j0)

)
− 1 + 3k

]
+ κj0+k

ε − κj0ε
)

=

exp
(
−3j0Cε3

k
)

exp
(
−3j0Cε

[
log 3
log 2 ·

(
θ(ε,j0)

2k
− θ(ε, j0)

)
− 1
]

+ κj0+k
ε − κj0ε

)
=

exp
(
−3j0Cε3

k
)

exp
(

3j0Cε

[
log 3
log 2θ(ε, j0) ·

(
1− 1

2k

)
+ 1
]

+ κj0+k
ε − κj0ε

)
.

With the above identities we are ready to show how to get the upper bounds for
Pβ(j0)(Cj0+k)

Pβ(j0)(Cj0 ) . This will be done by considering separate cases, whether k is positive or

negative.

Case k > 0. In this case, using the previous identity, θ(ε, j0) < 1 and κj0+k
ε −κj0ε < 1,

we have

Pβ(j0)(Cj0+k)

Pβ(j0)(Cj0)
< exp

(
−3j0Cε3

k
)

exp

(
3j0Cε

[
log 3

log 2
+ 1

]
+ 1

)

≤ exp

(
−3j0Cε

[
3k − log 3

log 2
− 1

]
+ 1

)
.

Of course the above inequality implies, for all k ∈ N, that

Pβ(j0)(Cj0+k) ≤ Pβ(j0)(Cj0) exp

(
1− 3j0Cε

[
3k − log 3

log 2
− 1

])
and then summing over k we obtain

∞∑
k=1

Pβ(j0)(Cj0+k) ≤
∞∑
k=1

exp

(
1− 3j0Cε

[
3k − log 3

log 2
− 1

])
.

In order to bound this series, we decompose it as follows

exp

(
1− 3j0Cε

[
2− log 3

log 2

])
+

∞∑
k=2

exp

(
1− 3j0Cε

[
3k − log 3

log 2
− 1

])
.

By a simple induction process one proves that k ≤ 3k − log 3
log 2 − 1, for all k ≥ 2. From
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this observation it follows the upper bound

∞∑
k=1

Pβ(j0)(Cj0+k) ≤ exp

(
1− 3j0Cε

[
2− log 3

log 2

])
+

∞∑
k=2

exp
(
1− 3j0Cεk

)

= exp

(
1− 3j0Cε

[
2− log 3

log 2

])
+

exp
(
1− 3j02Cε

)
1− exp (−3j0Cε)

≤ exp

(
1− 3Cε

[
2− log 3

log 2

])
+

exp (1− 6Cε)

1− exp (−3Cε)
.

As Cε = − log ε → ∞ when ε → 0, we can choose an ε0 such that for all 0 < ε < ε0,
we have

exp

(
1− 3Cε

[
2− log 3

log 2

])
+

exp (1− 6Cε)

1− exp (−3Cε)
<
δ

2
. (34)

Note that ε0 > 0 does not depend on j0.
This implies that

∞∑
k=1

Pβ(j0)(Cj0+k) <
δ

2
, (35)

for any j0 ∈ N, provided 0 < ε < ε0.

Case k < 0. From Identity 1, we have
Pβ(j0)(Cj0+k)

Pβ(j0)(Cj0 ) is equal to

exp
(
−3j0Cε3

k
)

exp

(
3j0Cε

[
log 3

log 2
θ(ε, j0) ·

(
1− 1

2k

)
+ 1

]
+ κj0+k

ε − κj0ε
)
.

Note that we can choose 0 < ε1 ≤ ε0 such that, for all 0 < ε < ε1 and all j0 ≥ 1, we
have

θ(ε, j0)
log 3

log 2
− 1 =

1− 9ε8·3j0

1− ε8·3j0
log 3

log 2
− 1 >

log 3
log 2 − 1

2
≡ A. (36)

As a consequence we have

θ(ε, j0) >
log 2

log 3
. (37)

Then
log 3

log 2
θ(ε, j0) ·

(
1− 1

2k

)
+ 1 < 0

for any k ∈ {−j0 + 1, . . . ,−1}, and we have the following inequality, when we use
κj0+k
ε − κj0ε < 0 and −3j0Cε3

k < 0

exp
(
−3j0Cε3

k
)

exp

(
3j0Cε

[
log 3

log 2
θ(ε, j0) ·

(
1− 1

2k

)
+ 1

]
+ κj0+k

ε − κj0ε
)
≤
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≤ exp

(
3Cε

[
log 3

log 2
θ(ε, j0) ·

(
1− 1

2k

)
+ 1

])
.

From this we obtain

Pβ(j0)(Cj0+k) ≤ exp

(
3Cε

[
log 3

log 2
θ(ε, j0) ·

(
1− 1

2k

)
+ 1

])
.

Using this upper bound, (36) and (37) again, it follows that

j0−1∑
k=1

Pβ(j0)(Cj0−k) ≤
∞∑
k=1

exp

(
3Cε

[
log 3

log 2
θ(ε, j0) ·

(
1− 2k

)
+ 1

])

< exp

(
3Cε

[
− log 3

log 2
θ(ε, j0) + 1

])
+

∞∑
k=2

exp
(
3Cε

[(
1− 2k

)
+ 1
])

< e−3CεA +

∞∑
k=2

exp
(
3Cε

(
2− 2k

))

< e−3CεA +

∞∑
k=2

exp (−3Cεk) = e−3CεA +
e−6Cε

1− e−3Cε

Using again that Cε = − log ε→ +∞ when ε→ 0, and A = log 3−log 2
2 log 2 > 0 we can

choose 0 < εδ ≤ ε1 such that for all 0 < ε < ε1 we have

e−3 log 3−log 2
2 log 2 Cε +

e−6Cε

1− e−3Cε
<
δ

2
, (38)

which implies
j0−1∑
k=1

Pβ(j0)(Cj0−k) <
δ

2
. (39)

Finally by (35) and (39) we get ∑
k∈N\{j0}

Pβ(j0)(Ck) < δ.

if ε < εδ.

6.5 The non-selection theorem

Now we are ready to state and prove the main result of this section which is due to A.
C. D. van Enter and W. M. Ruszel [20]. Note that in the notation we used before the
maximizing value is m(A) = supU .
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Theorem 32. For the potential A described above, consider the family of probability
measures µβA, with β ∈ R. Then, in the weak* topology, there is no selection of
measure, that is, there is no limit for µβA, when β →∞.

Proof. Consider the Borel set

B = {(θ0 − θ1) ∈ [0, π] ⊂ S1} ⊂ Bi,

and, the non-continuous function IB . Given small δ and ε, we can approximate IB by
a continuous function ϕ : Bi → R, where the set of points where ϕ 6= IB is contained
in the small set

D = {(θ0 − θ1) ∈ [0, ε] ∪ [π − ε, π] ⊂ S1} ⊂ Bi.

From the above we can choose a suitable ϕ, and, also present two sequences sn and
tn, converging to infinity, such that∫

ϕdµsnA > 1− δ

and ∫
ϕdµtnA < δ.

This shows that there is no limit for µβA.

Remark 7. We point out that the example described above can be adapted in order
to produce a continuous potential A which does not select in the limit when β → ∞
[20].
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